
Fourier Analysis on Number Fields and Hecke’s

Zeta Functions - Tate’s Thesis

Vatsal Limbachia

November 2020

1 Abstract

In the early 20th century, Hecke attempted to find a further generalization of the
Dirichlet L-series and the Dedekind zeta function. In 1920, he [14] introduced
the notion of a Grössencharakter, an ideal class character of a number field, and
established the analytic continuation and functional equation of its associated
L-series, the Hecke L-series. In 1950, John Tate [27], following the suggestion
of his advisor, Emil Artin, rewrote Hecke’s work. Tate provided a more elegant
proof of the functional equation of the Hecke L-series by using Fourier analysis
on the adeles and employing a reformulation of the Grössencharakter in terms of
a character on the ideles. Tate’s work now is generally understood as the GL(1)
case of automorphic forms [2] and in an extension to Langlands Program.
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2 Introduction

We introduce our paper with a well-known function, Riemann zeta function,
which will play an important role in our development of the thesis. It is defined
as an absolutely convergent series

ζ(s) =
∑
n=1

1

ns

for complex numbers s such that R(s) > 1. If we let s = 1, then series diverges
and becomes a harmonic series.

In 1859, Riemann[25] showed that the function ζ(s) is analytically continuous
on a complex plane to a holomorphic function at s 6= 1. Thus, the residue of a
pole at s = 1 is 1. He also proved the following equation

ξ(s) = ξ(1− s)

where ξ(s) = π−s/2Γ( s2 )ζ(s) and

Γ(s) =

∫ ∞
0

e−tts−1dt

It can be shown that Γ(s) is convergent for R(s) > 1 and can be meromorphically
continued to the s plane with poles at negative integers. Riemann also showed
that ζ(s) has infinitely many zeros on the critical strip of 0 < R(s) < 1 and
claimed that all zeros lie on the line R(s) = 1/2. This is known as Riemann
Hypothesis and it has not been proved till date.

Riemann also proved the prime number theorem which states that

lim
x→∞

( x
logx )

π(x)
= 1

where π(x) is the prime number function for x ∈ R such that p ≤ x for p prime
numbers.
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The Generalised Riemann Hypothesis, which was proven using Dirichlet L-
series, states that for every Dirichlet character χ, the zeros of L(χ, s) = 0
in the critical strip lies on the line R(s) = 1/2. We will learn more about L-
functions and Dirichlet characters in the upcoming sections, as they will play
an important role in our understanding of Hecke’s zeta function.

Algebraic number theory is the study of Diophantine equations xn + yn = zn.
This led mathematicians to study unique factorization of number fields. With
these results, mathematicians were almost able to prove Fermat’s Last Theorem.
This led to introduce the concept of ideals and Kummer was the first to study
ideals on number fields[10]. If the ring of integers of a number field is a principal
ideal domain (i.e. every ideal is generated by a single element), then the ring of
integers is a unique factorization domain. So,the failure of the ring of integers of
a number field to be a principal ideal domain that prevents the ring of integers
from being a unique factorization domain. The fractional ideals of a number
field form a group under multiplication. The ideal class group of the number
field is the quotient group of all fractional ideals by principal ideals, and thus is
an object that measures how unique factorization fails. Investigating the prime
ideals of a number ring can help us to understand the ideal class group , and
hence the failure of unique factorization.

We know that the Riemann zeta function gives information about the distribu-
tion of rational primes, Dedekind’s work generated the Dedekind zeta function
[7] for a number field K hoping to gain a better understanding of the primes
in a number ring, and thus make progress on solving Fermat’s Last Theorem.
More information about the values of integer points of ζ(s) can be studied in
Algebraic K-Theory.

As Dirichlet generalised the Riemann-zeta function, similarly, Hecke wanted
to generalise the Dedekind zeta function to an L-function of a character on a
number field. He created a special multiplicative function on the ideals of oK ,
called Grossencharackter.

Hecke [14] proved that the function L(s, χ) has meromorphic continuation to
the whole s-plane and satisfies a functional equation. However, he was not
able to explicitly describe the factors that arise in the functional equation. In
1940, Chevalley [3] introduced the notion of the idele-class group. In 1950, John
Tate [27] used the idele-class group to redefine notion of a Grössencharakter;
his definition eliminated many of the difficulties associated with constructing a
Grössencharakter.

The following paper attempts to understand the machinery of Tate’s thesis and
how seemingly disparate fields of mathematics connect to one another. Tate’s
work both inspired and led to the study of automorphic forms and represen-
tations and, more generally, to the Langland’s Program, itself one of the most
overarching theories in mathematics and number theory. In the following chap-
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ters, we will gather some background knowledge which is necessary, beginning
with topological groups, Haar measure, Pontryagin duality and Fourier Inver-
sion formula in next section 3. In section 4, we will briefly study the results
from local and global fields. This section contains a short summary of how the
existence and uniqueness of the Haar measure, explicitly the module of auto-
morphism, can be used to classify locally compact fields, followed by the next
section, where we introduce the restricted direct product and its topology; re-
sults about the quasi-characters, characters, the dual group, the Haar measure
of the restricted product and the results of adeles and ideles are also proved.

Finally, we introduce the main content of Tate’s thesis and explore in detail the
Schwartz-Bruhat functions, the Poisson summation formula and its extensions,
the Riemann-Roch Theorem, the proof of the meromorphic continuation and
functional equation of the Hecke L-function attached to an idele-class quasi
character and the volume of the norm-one idele-class group and thereby provide
the residues of the Hecke and Dedekind zeta function at s = 1.
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3 Topological Groups, the Haar Measure, and
Pontryagin Duality

In this section, we will primarily follow the chapters from Ramakrishnan and
Valenza’s Fourier Analysis on Number Fields [24] and Folland’s book, Real
Analysis: Modern Techniques and Their Applications. Most of the short proofs
will be given however the reader will be referred to the text for others.

3.1 Topological Groups

Definition 3.1.1 A topological group is a group G with a topology such that
(g, h) 7→ gh from G×G to G and g 7→ g−1 is continuous.

Proposition 3.1.2 A group G is a topological group if and only if for all g.h ∈ G
and any neighbourhood W of gh−1, there exists an open neighbourhoods of U of
g and V of h such that UV −1 ⊆W

Proof: Let G be a topological group and let W be a neighbourhood of gh−1.
Let us take W to be open and by definition of neighbourhood, we can there
exists an open set W1 that contains gh−1 and in W . We can show the following
multiplication map f : G × G → G defined by (g, h) 7→ gh. As f−1(W ) and
constitutes basis for G×G, then there exists open sets U and V1 of G containing
g and h−1, respectively, such that U×V1 ⊆ f−1(W ). As inversion is continuous,
V −11 is open set containing h. Thus, we define V −11 = V and V −1 = V1 is an
open neighbourhood of h−1. Thus, there exists an open neighbourhoods of U
of g and V of h such that UV −1 ⊆W .

�

By using discrete topology on G, it will be a topological group. It is also a
translation invariant, where by fixing an element, we consider its right or left
translation, which is a homeomorphism from G 7→ G. Let g ∈ G and U ⊆ G,
the following are equivalent:

(i) U is open

(ii) gU is open

(iii) Ug is open

Definition 3.1.3 LetX be a topological space and let S be a subset ofHomeo(X),
the set of all homeomorphism from X to itself. Then X is said to be a home-
ogenous space under S if ∀x, y ∈ X, there exists f ∈ S such that f(x) = y.
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Proposition 3.1.4 Every topological group is translation invariant and homoge-
nous under itself (S = G). Furthermore, local neighbourhood base at the identity
determines a local base at all g ∈ G

Proof: Refer to the text by Ramakrishnan and Valenza

�

Examples :

(i) Any group G imposed with the discrete topology is a topological group.

(ii) Any group G imposed with the trivial topology is a topological group.

(iii) Every subgroup of a topological group, imposed with the subspace topology,
is a topological group.

(iv) The groups (Z, +), (Q, +), with the subspace topology induced by the
Euclidean topology on R are topological groups.

Proposition 3.1.5 Let G be a group and assume the topology on G is induced
from metric, d. Then G is a topological group if and only if the following
condition hold:

(i) For all ε > 0 and g1g2 ∈ G there exists a δ > 0 such that d(g1g2, h1h2) < ε
whenever d(g1, h1) < δ and d(g1, h2) < δ

(ii) For all > 0 and g ∈ G there exists δ > 0 such that d(g−1h−1) < ε whenever
d(g, h) < δ

Proof: Proof is trivial

�

Proposition 3.1.6 Let G1 and G2 be topological groups. The direct product
G1 × G2 imposed with product topology and group operation is a topological
group

Proof: Since G1 and G2 are topological groups, we can say that there exists
open sets U1, V1, U2, V2 of g1, h1, g2, h2 respectively such that U1V

−1
1 ⊆ W1

and U2V
−1
2 ⊆W2, where W1 and W2 are contained in neighbourhood W . Thus,

U1×U2 is a neighbourhood of (g1, g2) and V1×V2 is a neighbourhood of (h1, h2)
such that (U1 × U2)(V1 × V2)−1 ⊆ (W1 ×W2) ⊆ W . Therefore, G1 × G2 is a
topological group.

�
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Let G be a topological group, then the subset S is called symmetric if and only
if S = S−1.

Proposition 3.1.7 Let G be a topological group, then the following assertions
hold:

(i) Every neighbourhood U of the identity contains a neighbourhood V of the
identity such that V V ⊆ U .

(ii) Every neighborhood U of the identity contains a symmetric neighborhood
V of the identity.

(iii) If H is a subgroup of G, so is its closure.

(iv) Every open subgroup of G is also closed.

(v) If K1 and K2 are compact subsets of G, so is K1K2.

Proof : Proof is trivial

�

Let f be a continuous from a group G to R or C, we define that f is left uniformly
continuous if, for all ε > 0, there exists a neighbourhood V of identity such that

‖Lhf − f‖v < ε;∀h ∈ V

where Lhf(g) = f(h−1g) as left translate and Rhf(g) = f(gh) as right translate

Let Cc(G) be the space of continuous functions on G with compact support

Proposition 3.1.8 Let G be a topological group. Every function f ∈ Cc(G) is
both left and right uniformly continuous.

Proof: Let K = sup(f) and ε > 0. As f is continuous, we can say that Ug is an
open neighbourhood ∀g ∈ K and

|f(gh)− f(h)| < ε

From the previous proposition, we know that there exists a neighbourhood Vg,
of the identity such that VgVg ⊆ Ug. Consider the cover gVg of K, which
we can reduce to a finite subcover,giVgi where i = 1, 2, ... by compactness. Let
V =

⋂n
i=1 Vg. Let h ∈ V and g ∈ K. If g ∈ K, then there exists an i ∈ (1, 2, ...n)

such that g ∈ giVgi . Using the triangle inequality, we get

|f(gh)f(g)| ≤ |f(gh)f(gi)|+ |f(gi)f(g)|
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Both terms on the right are bounded by because g−1i g = g−1j (gh)h−1 ∈ VgjVgi ⊆
Ugj . Thus, f is right uniformly continuous in K. If g is not in K, then we need
to bound f(gh). If f(gh) 6= 0, then gh ∈ supp(f) , and hence gh ∈ gjVj for some
j1, ..., n. Therefore, f(gh)f(gj) <. Also g−1ij g = g−1j (gh)h−1 ∈ VgjVgj ⊆ Ugj , so
|f(gj)| < ε. Finally, |f(gh)− f(h)| < 2ε

�

Proposition 3.1.9 Let G be a topological group. Then the following assertions
are equivalent:

(i) G if T1

(ii) G is Hausdorff

(iii) The identity e is closed in G

(iv) Every point of G is closed in G

Proof: Proof is trivial

�

Let G be a topological group and H be its subgroup. Then we can say that,
G/H is a set of left cosets with quotient topology such that ρ : g 7→ gH is
continuous. U is open in G/H is a group if and only if ρ−1(U) is open in
G. Under coset multiplication, G/H is a group if and only if H is a normal
subgroup of G. Thus, G/H can be said as a topological group.

Proposition 3.1.10 Let G be a topological group and let H be a subgroup of
G. Then the following assertions hold:

(i) The quotient space G/H is homogeneous under G

(ii) The canonical projection ρ : G→ G/H is an open map

(iii) The quotient space G/H is T1 if and only if H is closed

(iv) The quotient space G/H is discrete if and only if H is open. Moreover, if
G is compact, then H is open if and only if G/H is finite

(v) If H is normal in G, then G/H is a topological group with respect to coset
multiplication and the quotient topology

(vi) Let H be the closure of e in G. Then H is normal in G, and the quotient
group G/H is Hausdorff with respect to the quotient topology
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Proposition 3.1.11 Let G be a Hausdorff topological group. Then:

(i) The product of a closed subset F and a compact subset K is closed

(ii) If H is a compact subgroup of G, then ρ : G→ G/H is a closed map

Proof: (i) Let z ∈ FK. So, z is the limit of convergent net fjkjj∈I ⊂ FK,
where fjj∈I ∈ F and kjj∈I ∈ K. Since K is compact, there exists a convergent
subnet κj ∈ K that converges to a point k ∈ K. Note that since fjkj converges,
then we can replace fjkj with fjκj . Consider U an open neighborhood of e
in G. As shown above, there exists an open neighborhood V of e such that
V V ⊆ U . The nets z−1fjκj and κ−1j kk both converge to e and thus lie in

V . Since V V ⊆ U , then the product of the nets,z−1fjk, eventually lie in U .
Consequently, limfj = zk−1 and z = zk−1k ∈ FK

(ii) Let C be closed in G. Then we must show that ρ(C) is closed in G/H.
However, under the quotient topology, this reduces to showing that ρ−1ρ(C) =
CH is closed in G. By part (i), CH is closed in G since H is compact and C is
closed.

�

3.2 Locally Compact Fields

Definition 3.2.1 A ring R with operations ”+” and ”.” such that (R,+) is
a topological group and such that M : R × R → R defined by (r, s) 7→ r.s is
continuous is called a topological ring. Similarly, we can define topological field.

Definition 3.2.2 A topological space is locally compact if every point of the
space admits a compact neighborhood. A topological group G that is both
locally compact and Hausdorff is called a locally compact group. A topological
field F that is both locally compact and Hausdorff is called a locally compact
field.

Proposition 3.2.3 Any locally compact subset of a Hausdorff space is the set
theoretic difference of two closed sets or, equivalently, is the intersection of an
open and closed set.Consequently, any locally compact dense subset of a Haus-
dorff space is open.

Proof: Let S be a compact subset of a Hausdorff space X. We can find an
open neighborhood U in S of s ∈ S such that ClsU is compact in S. Since
U is open in S, then there exists V , open in X, such that U = V ∩ S. Then
Clx(V ∩S)∩S = ClxU∩S = ClsU is compact. So, Clx(S∩V )∩S is closed in X
and contains S ∩V , thus Clx(S ∩V ) ⊂ S. Hence, ClxS ∩V is a neighbourhood
of s in ClxS, which is contained in S. Therefore, S is open on ClxS. Any open
set in Clx(S) form B ∩ Clx(S) where B is open in X. If S is dense and locally
compact, then, as shown, S = O ∩ C, where O and C are, respectively, open
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and closed in X. Since S = A−T where A, T are closed in X, then pick x ∈ Ac
, which is open. Let U be open neighbourhood of x in Ac, which is open. This
contradicts with density of S. Therefore, Ac = ∅ and A = X, which implies
S = X − T . Consequently, S is open.

�

Proposition 3.2.4 Let (Gi)i ∈ I be a set of locally compact groups such that
Gi is compact for all but finitely many i ∈ I. Then

∏
i=1

Gi

is locally compact

Proof: Let S = i ∈ I : Gi not compact. By hypothesis, this set is finite. By
Tychonoff’s theorem, the possibly infinite product∏

nu/∈S

Gi

is compact. Furthermore, since Gi, i ∈ S is locally compact, then the finite
product

∏
i∈S Gi is locally compact. Indeed, let (gi)i∈S be a point in

∏
i∈S Gi.

Since, Gi is locally compact, then for all i ∈ S, there exists a locally compact
neighbourhood Ki ⊂ Gi of gi. Let K =

∏
i∈S Ki. Then K is a compact

neighbourhood of (xi)i∈S in the direct product
∏
i∈S Gi since a product of

finitely many compact sets is compact. Thus, the full product is locally compact.

�

Proposition 3.2.5 If G is locally compact group and H is a closed subgroup,
then G/H is a locally compact group.

Proof: Proof is trivial using the Propositions proved previously.

�
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3.3 Haar Measure

In this section, we will recall some important results of Measure theory and
observe how they will be useful in developing our thesis.

Recall that the Borel σ-algebra for a topological space X is the smallest σ-
algebra containing all open sets. A positive measure µ on a measure space (X,
M) is a function µ : M → R+ ∪ (∞) that is countably additive, where R+ is set
of nonnegative reals.

µ
( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An)

where An is a collection of disjoint sets in M . Let µ be a Borel measure on X,
a locally compact Hausdorff space and let E be a Borel subset of X. We can
say that µ is outer regular on E if

µ(E) = inf{µ(U) : E ⊆ U,Uisopen}

and that µ is inner regular on E if

µ(E) = sup{µ(K) : K ⊆ E,Kiscompact}

A measure µ is said to be regular if every Borel set in X is both inner and outer
regular.

Definition 3.3.1 A Radon measure on a X, a locally compact Hausdorff space,
is a Borel measure that is finite on compact sets, outer regular on all Borel sets,
and inner regular on all open sets.

A measure µ is said to be left translation invariant, if for all Borel measure sets
E in G

µ(s.E) = µ(E)

for all s ∈ G, where G is locally compact topological group and µ is Borel
measure on G.

Definition 3.3.2 A left Haar measure (respectively, right Haar measure) on a
locally compact group G is a nonzero Radon measure µ, which is left translation
invariant (respectively, right traslation invariant). A bi-invariant Haar measure
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on a locally compact group G is a nonzero Radon measure that is both right
and left invariant.

Proposition 3.3.3 Let G be a locally compact group with nonzero Radon mea-
sure µ. Then the following assertions are true:

(i) The measure is a left Haar measure on G if and only if the measure µ̃ ,

defined by µ̃(E) = ˜µ(E − 1), is a right Haar measure on G

(ii) The measure µ is a left Haar measure on G if and only if

∫
G
Lsfdµ =

∫
g
fdµ

(iii) If µ is a left Haar measure on G, then µ is positive on all nonempty open
subsets of G

∫
g
fdµ > 0

(iv) If µ is a left Haar measure on G, then µ(G) is finite if and only if G is
compact

Proof: (i) As the inversion is a homeomorphism, then E−1 is Borel if and only
if E is Borel. Then we have that µ̃(Es) = µ̃ (E) for all s ∈ G and for all Borel
sets in E if and only if µ(s−1E−1) = µ(E−1) for all s ∈ G and Borel sets E

(ii) As µ is Haar measure onG, then the equality of integrals follows by definition
of simple functions, as they are the finite linear combinations of characteristic
functions on G. Conversely, we can also use by the Riesz representation theorem,
explicitly recover the Radon measure µ of any open subset U ⊆ G as follows:

µ(U) = sup{
∫
G
fdµ : f ∈ Cc(G), ‖f‖u ≤ 1}

From this one sees at once that if left integral is left translation invariant, then
µ(sU) = µ(U) for all open subsets U of G. The result now extends to all Borel
subsets of G because a Radon measure is by definition outer regular.

(iii) As µ > 0 and its left Haar measure, so we can say that µ(siU) = µ(U).
Let U be an open set in G. Let K ⊆ G, then K is compact, then there exists
s1, s2, s3....sn in G such that K ⊆

⋃n
i=1(siU). With the cover of finitely many

translates on compact set, we can prove existence of the Haar measure on a
locally compact group. Using the result from left Haar measure, if f ∈ Cc, then
there exists a compact set K

′
such that f > 0. Furthermore, there exits a set

U
′ ⊆ K with µ(U) > 0 such that f > R for some constant R > 0. Then

12



∫
G
fdµ = Rµ(U) > 0

�

Theorem 3.3.4Every locally compact group G admits a left (or right) Haar
measure. Furthermore, this measure is unique up to multiplication by a positive
real constant.

Proof: Proof involves using the Riesz Representation theorem mentioned below
and can be found in full extent in Rudin [26]

�

We will state below the Riesz Representation Theorem, as taken from Rudin
[26], Chapter 2; it is the essential ingredient in the proof of the existence of a
Haar measure for locally compact groups.

Theorem 3.3.5 Let X be a locally compact Hausdorff space and let Lambda
be a positive linear functional on Cc(X). Then there exists σ-algebra M in X
which contains all Borel sets in X, and there exists a unique positive measure
µ on M , which represents |Lambda in the sense that :

(i) Λf =
∫
fdµ∀f ∈ Cc(X) satisfies the following properties

(ii) µ(K) <∞ for all compact sets K ⊂ X

(iii) µ is outer regular on E ∈M

(iv) µ is inner regular on all open sets and all E ∈M such that µ(E) <∞

(v) If E ∈ M , A ⊂ E and u(E) = 0, then A ∈ M . We say a measure is
complete if it satisfies this property.

Corollary 3.3.6Let µ and M be as above

(i) µ is a Radon measure

(ii) Every σ-compact set has σ-finite measure

(iii) If E ∈M and E has σ-finite measure, then E is inner regular

(iv) If X is σ-compact, then µ is regular

(v) If µ is σ-finite, then σ is regular
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3.4 Pontryagin Duality and the Fourier Inversion Theorem

In this section, we will discuss continuous characters of G. Its a topological
group of continuous homomorphisms from a group G to S1. The group of
continuous characters form a group under multiplication and this group is called
the Pontryagin dual of G and is denoted by Ĝ. The Pontryagin duality states
that G and Ĝ are mutually dual.

Let us now focus on the abelian topological group G. We will write Ĝ, as
the multiplicative group of continuous complex characters of G. That is Ĝ =
Hom(G,S1). Let us now take a look at the Proposition below about abelian
groups

Proposition 3.4.1

(i) R̂ ∼= R with pairing < x, ξ ≥ e2πiξx

(ii) Ŝ1 ∼= Z with pairing < α, α ≥ αn

(iii) Ẑ ∼= S1 with pairing < n, α ≥ αn

(iv) Ẑ/nZ ∼= Z/nZ with pairing < m, k ≥ e2πimkn

In Pontryagin dual field, R is the dual group of additive group of the field (R,+)

The dual group of the locally compact field R is itself. We will see in the
upcoming sections that locally compact non-discrete fields (local fields) are self-
dual.

Proposition 3.4.2The Pontryagin dual of G1 ×G2 is isomorphic to Ĝ1 × Ĝ2

Let G be a group and X a subset of G. We define Xn ⊆ G where n ∈ N

X(n) = {
n∏
j=1

xj : xj ∈ X, j = 1, ..., n}

We will now impose Ĝ with compact-open topology. We define a neighbourhood
base for trivial characters in Ĝ.

W (K,V ) = {χ ∈ Ĝ : χ(K) ⊆ V }

where K is a compact subset of G and V is a neighborhood of the identity in
S1.

14



Thus, if G is compact, the compact-open topology coincides with topology of
uniform convergence and if G is a separable locally compact abelian group, then
Ĝ is metrizable.

The following lemma will present me the important properties of compact-open
topology on Ĝ

Lemma 3.4.3 Let m be a positive integer and suppose that x ∈ C such that
x, x2, x3, ...xm lie in N(1). Then x ∈ N(1/m). Consequently, if U is a subset
of G containing the identity and χ : G → S1 is a group homomorphism such
that χU

m ⊆ N(1), then χ(U) ⊆ N(1/m)

Proof: We know that there is a universal covering space of S1 is R with contin-
uous surjective map

φ : R→ S1

The kernel of φ is Z. For ε ∈ R such that 0 < ε ≤ 1, define N(ε) ⊆ S1 as

N(ε) = φ((−ε/3, ε/3))

We can prove this lemma by induction. For m = 1, it is trivial. Let r be a
positive integer such that xr ∈ N(1). Then x ∈ (−1/3, 1/3) which implies that
there exists a y ∈ N(1/r) such that xr = yr. Hence, the quotient of x/y is an
rth root of unity. As φ(q/r) = e2πiq/r is an rth root of unity for all q ∈ Z then
x ∈ N(1/r)φ(q/r). We claim that for all r > 0

N
(
1
r ) ∩N

(
1
r+1 )φ( q

r+1 ) 6= ∅ =⇒ q = 0

By definition we know that

N
(

1
r+1 )φ( q

r+1 ) = {e2πit/3 : t ∈
(
3q−1
r+1 ,

3q+1
r+1 )}

and

N
(
1
r ) = {e2πit/3 : t ∈

(−1
r ,

1
r )}

The above sets will not have intersection unless

1
r >

3q−1
r+1 =⇒ 2r + 1 > 3qr
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which cannot hold unless q = 0

Let us suppose that x ∈ N(1/r) and xr+1 ∈ N(1). Then using the previous
argument again, we obtain x ∈ N(1/r + 1)φ(q/r + 1) where 0 ≤ q < r + 1.
Then x ∈ N(1/r) ∩ N(1/(r + 1))φ(q/(r + 1)) which implies q = 0 , and hence
x ∈ N(1/(r+ 1)). Consequently, it follows by induction that if x1, x2, ...., xm lie
in N(1), then x ∈ N(1/m).

Similarly, let g ∈ U ⊆ G; e ⊆ U . Then {g1, g2, ...gm} ∈ U (m). Therefore, if
χ(U (m)) ⊆ N(1), then χ(g1), χ(g2)...χ(gm) ∈ N(1). Thus, χ(U) ⊆ N(1/m).

�

In the following proposition, we will observe that the dual group of a locally
compact group is locally compact. Furthermore, we will see that the dual group
of a compact group is discrete and that the dual group of a discrete group is
compact. These three facts will be essential in proving that a local field is
isomorphic to its dual.

Proposition 3.4.4

(i) A group homomorphism χ : G→ S1 is continuous and hence a character of
G, if and only if χ−1(N(1)) is a neighbourhood of the identity in G.

(ii) The family {W (K,N(1))}K , indexed over all compact subsets of G, is a
neighborhood base of the trivial character for the compact-open topology of Ĝ.

(iii) If G is discrete, then Ĝ is compact.

(iv) If G is compact, then Ĝ is discrete.

(v) If G is locally compact, then Ĝ is locally compact.

Proof: Refer book by Ramakrishnan and Valenza

�

Let G be a locally compact group and let dy be the Haar measure on G. We
can say that function f : G→ C is absolutely integrable if

‖f‖i :=
∫
|f(y)|dy <∞

With respect to function addition, the space of absolutely integrable functions
forms a complex vector space. In fact, ‖.‖1 is a semi-norm of this vector space.
We identify functions f, g : G→ C if ‖fg‖1 = 0 and denote the vector space by
L1(G). Let f ∈ L1(G). Then we define f : Ĝ→ C, the Fourier transform of f ,
to be
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f̂(χ) =

∫
G

f(y)χ(y)dy

For χ ∈ Ĝ

Examples 3.4.5

(i) For G = R, we know that R̂ ∼= R and hence we can identify each t ∈ R with
the character

x 7→ e2πixt

Let dx be the Lebesgue measure on R. Let f ∈ L1(R).Thus, in this case the
Fourier transform reduces to

f̂(t) =

∫
R
f(x)e−2πixtdx

Although we are used to thinking of the Fourier transform as a function on R,
it is actually function on R̂. The ′t′ is representing the characters from R→ S1

given by χ(x) = e−2πixt.

Theorem 3.4.6 (Fourier Inversion Theorem) There exists a Haar measure dχ
on Ĝ such that for all f ∈ B(G)

f(y) =

∫
Ĝ

f̂(χ)χ(y)dχ

Note that
ˆ̂
f(y) = f(−y). In addition, the Fourier transform f 7→ f̂ identifies

B(G) with B(Ĝ).

Proof: See Folland [11], Chapter 4, Theorem 4.32.

�

When defining the Fourier transform on a locally compact group, we must fix
a Haar measure. Since the Haar measure is unique up to a positive constant,
then any Fourier transform, no matter what measure is fixed when defining it,
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will only differ from another defined Fourier transform by a constant. Suppose
we fix a measure dx on a locally compact group G when defining the Fourier
transform. Then the Fourier inversion theorem guarantees such that the Fourier
inversion theorem holds for all the existence of a measure dχ on Ĝ such that
the Fourier transform holds for all f ∈ B(G). However, if we fix a measure, say
cḋx on G, then the dual measure to this measure is precisely dχ/c.

Theorem 3.4.7(Pontryagin Duality) The map that associates to g ∈ G the
character χ→ χ(g) of Ĝ is an isomorphism of topological groups G and Ĝ.Hence,
G and Ĝ are mutually dual.

Proof: Chapter 3, Section 4, of Ramakrishnan and Valenza [24].

�
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4 Restricted Direct Topology and the Adeles
and Ideles

In this section, we will learn the topology, dual group, and Haar measure of
the restricted direct product. Furthermore, we will develop tools for both the
integration and the Fourier transform of functions defined on the restricted
direct topology. After developing the theory for the general restricted product
in the first section, we will explore in the second section how the construction is
used in the number theoretic context. We will introduce the additive topological
group of adeles of a global field K, denoted AK and multiplicative topological
group of ideles of a global field K, denoted IK ; these will be used extensively
in Tate’s thesis. The adeles and ideles will help us to do harmonic analysis on
global field K.

4.1 Restricted Direct Topology

Definition 4.1.1 Let J = {v} be a set of indices for which we are given Gv,
a locally compact group, and let J∞ be a fixed finite subset of J such that for
each v /∈ J∞ we are given a compact open subgroup Hv ≤ Gv. We know that
Hv is closed subgroup of Gv. The restricted direct product of Gv with respect
to Hv, denoted by G, is defined as

∏
v∈J Gv = {(xv) : xv ∈ Gv}.

And xv ∈ Hv for all but finitely many v.

The restricted direct product is a subset of the set-theoretic direct product of
the Gv and a subgroup of the group-theoretic product of Gv . The restricted
direct product lies somewhere in between the group direct product and the
group direct sum (all but finitely many entries are the identity) The topology,
which we will call the restricted direct topology on G, is not equivalent to the
product topology.

As the restricted direct product is a group with respect to the componentwise
group operation, we can specify the neighbourhood base of the identity, to define
its topology :

B = {
∏
Nv}

where Nv is neighbourhood of 1 ∈ Gv and Nv = Hv for finitely many v.

For any S ⊆ J , which necessarily contains J∞, define Gs by

Gs =
∏
v∈S Gv ×

∏
v/∈S Hv
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Here it is assumed that J∞ ⊆ S because we have not necessarily required that
there exists Hv for v ∈ J∞. Gs is also locally compact.

Proposition 4.1.2 Gs is an open subgroup of G and the product topology on
Gs is identical to subspace topology induced by restricted direct topology defined
above.

Proof: Proof is trivial using the definitions of subspace and product topology �

Corollary 4.1.3 G is locally compact

Proof: Since Gs is compact in product topology, which implies that it is compact
with restricted direct topology. Furthermore, every x ∈ G is contained in some
Gs for an appropriate set S containing J∞. So, every element x ∈ G admits a
compact neighbourhood in Gs.

�

Proposition 4.1.4 A subset Y of G has compact closure if and only if Y ⊆∏
Kv, for some family of compact subsets Kv ⊆ Gv, such that Kv = Hv for all

but finitely many indices v.

Proof: Lets assume that Y has compact closure. Let K be the compact closure
of Y . As the subsets of the form Gs cover G and thus K, then a finite number of
them cover K. Let S

′
= ∪ni=1Si. Then GS′ cover K. Let ρv denote the projec-

tion of G onto Gv. This projection map will only be continuous in the product
topology. Since K is a subset of GS′ , which has two equivalent topologies–
one of which is the product topology, for which ρv is continuous–then ρv(K)
is compact in Gv , and ρv(K) = Hv for all but finitely many indices v. Let
Kv = ρv(K). Therefore, K, and thus Y , is contained in Kv . Now, assume
that Y ⊆

∏
Kv. Let C be the closure of Y , which is necessarily the smallest

closed set containing Y . Since Kv is a closed set containing Y ,then C ⊆
∏
Kv,

which then implies that C is compact.

�

4.2 Restricted Direct Quasi-Characters and Dual Group

Here we will learn about the group of quasi-characters, HomCont(G,C×), of the
restricted product of G. For y ∈ G, let yv be the projection onto the factor Gv
which maybe identified by closed subgroup of G.

Lemma 4.2.1 Let χ ∈ HomCont(G,C×). Then χ is trivial on all but finitely
many Hv. Therefore, for any y ∈ G, χ(yv) = 1 for all but finitely many v, and

χ(y) =
∏
v χ(yv)
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Proof: Let U be a neighbourhood of 1 in C× that contains no subgroups of C×
besides the trivial subgroup. As χ is continuous, then there exists a neighbour-
hood, V , of identity G, such that χ(V ) ⊆ U . We know that open neighborhoods
of the identity in the restricted direct topology are of the form of neighbourhood
Nv of identity in Gv. Let V =

∏
v Nv =

∏
v∈S Nv ×

∏
v/∈S Hv. Then

χ
(∏

v/∈S Hv) ⊆ U

As
∏
v/∈S Hv is a subgroup of G and χ is a homomorphism, then χ(

∏
v/∈S Hv) is

a subgroup of U . Then

χ
(∏

v/∈S Hv) = {1}

since the only subgroup of U is the trivial subgroup. Given any y ∈ G, we can
factor y into y1y2y3 , where y1 is a finite product of the projections of y that
lies outside any Hv, and where y2 is a finite product of the projections of y that
lie in some Hv for v ∈ S, and where y3 is a product of the projections of y, all
of which lie in Hv for v /∈ S. Therefore, χ is trivial on all but finitely many
projections of y and χ(y) =

∏
v χ(yv).

�

Lemma 4.2.2 For each v let χv ∈ HomCont(G,C×) and χv|Hv = 1 for all but
finitely many indices v. then we have that χ =

∏
v χv ∈ HomCont(G,C×)

Proof: Let S be a finite set of indices such that χv|Hv = 1 for all v /∈ S. Let
m be a cardinality of S. Since y = (Yv), where yv ∈ Hv for all but finitely
many v and χv|Hv = 1 for all v outside of S. Then

∏
v χv is a well defined quasi

character. Let U be a neighbourhood of 1 in C×. Then we have a neighbourhood
V in C× so that V (m) ⊆ U . Since χv is a continuous quasi-character of Gv ,
then for each v ∈ S, there exists a neighborhood Nv of the identity in Gv such
that χv(Nv) ⊆ U . Then

∏
v∈S Nv ×

∏
v/∈S Hv

is a neighborhood of the identity in G such that

χ
(∏

v∈S Nv ×
∏
v/∈S Hv) =

∏
v χv(Nv)×

∏
v χv(Hv) ⊆ V (m) ⊆ U

Thus, χ is continuous.

�
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Theorem 4.2.3 Let G be the restricted direct product of locally compact abelian
groups Gv with respect to compact-open subgroups Hv. As topological groups,
we have that

Ĝ =
∏
Ĝv

where the restricted direct product on the right is taken with respect to subgroups
defined by

K(Gv, Hv) = {χvĜv : χv|Hv=1}

for v /∈ J∞.

Proof: Chapter 4 of Ramakrishnan and Valenza [24].

�

The two lemmas and the theorem mentioned above about the dual group of
the restricted direct product will be used in Tate’s Thesis. We will use them to
construct standard non-trivial adelic structure, φK of number field K, local field
duality and in proving the Poisson summation formula and its useful extension,
the Rieman-Roch theorem. The Rieman-Roch theorem is the main result used
in proving the meromorphic continuation and functional equation of the global
zeta function.

4.3 Restricted Direct Integration and Self-Dual Measure

Let G be the restricted direct product of locally compact groups Gv with respect
to compact-open subgroups Hv . Since G is locally compact, then G admits a
Haar measure. However,like the characters of G, we want to define a Haar
measure on G in terms of Haar measures on Gv .

Proposition 4.3.1 Let dgv denote a left(right) Haar measure on Gv normalized
so that

∫
Hv

dgv = 1

for almost all v /∈ J∞. We know that Haar measure is necessarily finite on
compact sets, so we can normalize Haar measure. Then there is a unique left
(right) Haar measure dg on G such that for each finite set of indices S containing
J∞, the restriction of dgs of dg of Gs is precisely the product measure. We will
write dg =

∏
v dgv for this measure.
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Proof: Let us choose S as as set containing J∞ and define product of measure
dgv as dgS . By the normalization of dgv and the fact that S is finite, then the
compact group

∏
v/∈S Hv has finite measure with respect to dgS . As such, dgS

is a Haar measure on GS . Hence, the product measure dgS is a radon measure
and, furthermore, is invariant under the componentwise group operation because
each of the dgv is invariant under the group operation. See Chapter 7, Theorem
7.28, in Folland’s Real Analysis [12]. Let s be a larger set of indices which
implies that Gs ≤ GT . Then, by construction, we have that dgS coincides with
the restriction of dgT to the subgroup GS . Then G admits a Haar measure,
dg, as it is locally compact. Furthermore, the restriction of dg to GS is also a
Haar measure on GS . As such, we can pick any finite set S of indices containing
J∞,and choose the Haar measure dg of G, such that dg restricts to dgS . Let S

′

be a set of indices containing J∞. Then dg, constructed relative to dgS , uniquely
picks out the product measure on GS∪S′ , and hence on dgS′ .Therefore, dg is
independent of the S chosen and is unique.

�

We have now properly defined the existence of Haar measure dg on G in terms
of Haar measure dgv on Gv. We want to establish similar ideas in taking the
Fourier transformation functions defined on G. In the following proposition, we
define a special function which will play important role in proof of the functional
equation and analytic continuation of the Hecke L-function.

Proposition 4.3.2 (i) Let f be an integrable function on G. Then

∫
G

f(g) = limS

∫
GS

f(gs)dg

where the limit is taken over larger and larger S. If f is only assumed to
be continuous,then the above identity holds, but then we must accept that the
integral may take infinite values.

(ii) Let S0 denote the finite set of indices containing both J∞ and the set of
indices for which V ol(Hv, dgv) 6= 1. Suppose that for each index v, we are given
a continuous and integrable function fv on Gv, such that fv|Hv = 1 for all v
outside some finite set S1. Then for g = (gv) ∈ G we can define the function

f(g) =
∏
v fv(gv)

The function f is well defined and continuous on G. Furthermore, if S is any
finite set of indices including S0 and S1, then we have
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∫
Gs

f(g)dg =
∏
v∈S

(
fv(gv)dgv)

Furthermore, if the RHS of above equation is less than ∞, then

∫
G

f(g)dg =
∏
v

(
fv(gv)dgv)

and f ∈ L1(G)

(iii) Let {fv} and f be as they were in the previous part, but with the added
constraint of fv being a characteristic function of Hv for all v /∈ S1. Then
f ∈ L1(G) and in abelian case, the Fourier transform of f is given by

f̂(g) =
∏
v f̂v(gv)

If we additionally assume that f̂v ∈ L1(Ĝv) for all v, then f̂ ∈ L1(Ĝ). Recall
that B(G) is a set of functions such that f is continuous, f ∈ L1(G) and

f̂ ∈ L1(G). This is the set of functions for which the Fourier inversion theorem
holds. Therefore, if we assume fv ∈ B(Gv) for all v, and both V ol(Hv, dgv) and
fv = 1Hv for all but finitely many v, then f ∈ B(G).

Proof: Refer Chapter 5 in Ramakrishnan and Valenza [24].

�

In the next proposition, we will construct the dual measure dχ to dg on G that
the Fourier inversion theorem holds. The Fourier inverion theorem is a key
ingredient in proving both the Poisson summation formula and the Riemann-
Roch theorem.

Proposition 4.3.3 The measure dχ =
∏
v dχv, where dχv = ˆdgv, is dual mea-

sure of dg =
∏
v dgv. Therefore,

f(g) =

∫
Ĝ

f̂(χ)χ(g)dχ

for all f ∈ B(G)

24



Proof: From the previous propositions, we can say that V ol(Hv, dgv) = 1 and

dχ =
∏
v dχv is a Haar measure on

ˆ̂
G. Now we have to check duality for a given

product of functions. We already knwo that the Fourier transform for the set of
functions such that f =

∏
v fv, where fv ∈ B(Gv) and fv = 1Hv . By part (iii)

of above proposition, such functions are a part of B(G) and we have that

∫
Ĝ

f̂(χ)χ(g)dχ =
∏
v

∫
Ĝv

f̂v(χv)χv(gv)dχv

Since dχv is the dual measure to dgv, then

fvgv =

∫
Ĝv

f̂v(χv)χv(gv)dχv

Therefore,

∫
Ĝ

f̂(χ)χ(g)dχ =
∏
v

fv(gv) = f(g)

�

4.4 Adeles and Ideles

Let K be a number field. Let Kv be the completion of K at the vth place of
K. The restricted direct product of Kv, under addition, with respect to ov,is
called the adele group of K, and is denoted AK . Here Kv is an abelian locally
compact group and oK is a compact-open subgroup of Kv for all finite places v
of K. Every element of K is divisible by finitely many prime ideals, and hence
the embedding of K into Kv for all v lies in ov for all but finitely many places.
Therefore, K embeds diagonally into AK :

K → AK

x 7→ (x, x, ....)

Similarly, we can define the idele group, denoted by IK . It is a restricted direct
product of K∗v , as the multiplicative group with respect to o∗v, an open compact
subset of K∗v . As every element of K∗ is locally an integer,and hence a unit for
all but finitely many places, it diagonally embeds into IK :
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K∗ → IK

x 7→ (x, x, , , , , )

Proposition 4.4.1 (Approximation Theorem) For every global field K,we have
both

AK = K +A∞ and K ∩A∞ = oK

Proof: We know that K embeds diagonally into AK .We must show that for
every element x ∈ AK , there exists an element k ∈ K such that x − k has
an absolute value less than or equal to 1 for all finite places; meaning that,
x − k is locally an integer for all finite places. Let pv be the prime ideal of oK
corresponding to v, where v is finite place of K. Let x = (xv) ∈ AK . For all v,
there exists a positive integer mv such that pmvv xv ∈ oK . Since x ∈ AK is locally
not an integer at only a finite number of places, then we may find a rational
integer m which we can implicitly diagonally embed into AK such that all finite
components of mx lie in the ring of integers. We can construct a set of prime
ideals where ej be the power of prime pj appearing in the unique factorization
of the ideal m in oK .

m = pe11 p
e2
2 p

e2
2 ....p

en
n

Now by applying Chinese Remainder Theorem, we can find a λ ∈ oK such that

mxj = λ(modp
e
′
j

j ) j = {1, 2, 3....}

where xj is the pjth component of x in adeles. Let k = λm, then x− k will be
integral at p1...pn. We know that ring of integers of a global field K have finite
intersections and A∞ consists of all elements of the adeles that are locally an
integer at all finite places. So, K ∩A∞ = oK .

�

Corollary 4.4.2

AQ = Q + A∞ = Q +
(
R×

∏
pprime Zp)

and Q ∩ A∞ = Z

Lemma 4.4.3 Let E/K be a finite extension and fix a K-basis {u1, u2...} of E.
Then the map
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α :
∏n
j=1 AK → E

((xv,j)v)j 7→
∑
j uj(xv,j)v

is an isomorphism of topological groups

Proof: See Ramakrishnan and Valenza [24], Chapter 5, Section 3, Lemma 5-10.
�

Proposition 4.4.4 K is a discrete, co-compact subgroup of AK .

Proposition 4.4.5 There exists an isomorphism of topological groups

AQ/Q ∼= limR/nZ

Proof: See Ramakrishnan and Valenza [24], Chapter 5, Section 3, Proposition
5-12.

�

Proposition 4.4.6 The group K∗ embeds discretely in IK .

Proof: We know that φ : IK → A2
K , which yields a topological isomorphism of

IK onto its image under φ. We know from Proposition 4.4.4 that K embeds
discretely into AK . Here K ×K embeds discretely to AK × AK , which implies
that K∗ ×K∗ embeds discretely in φ(IK).

�

Definition 4.4.7 We define the idele-class group to be IK/K∗ and we denote
it by CK .

Since AK/IK is compact, one might hope that CK is also compact. But this is
not true, it follows from the existence of a nontrivial absolute value that will be
defined shortly. But first we must standardize our absolute value functions:

Definition 4.4.8 Let F be a local field of characteristic zero. We define the
normalized absolute value on F as follows:

(i) If F = R, then let |.|F be the standard absolute value.

(ii) If F = C, then let |.|F be the square of the standard absolute value.

(iii) If F is non-Archimedean, then let |.|F be such that |πF |F = 1
q where πF is

uniformizing parameter of F , and q is the order of the residue field oF /πF oF .
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These normalized absolute values satisfy another very important property. Let
l/k be finite extension of fields. If one fixes a basis of l over k, then we know
that every endomorphism of l as a k-vector space is uniquely representable as
a matrix with entries in k. Since l is a field, every element x of l defines an
endomorphism ρx of l as a k-vector space via multiplication. This formally is
called the regular representation. We can define the norm of x by Nl/k(x) as
the determinant of the matrix representation of ρx.

Lemma 4.4.9 Let l/k be a finite extension of local fields. Then for all x ∈ l,
we have

|x|l = |Nl/k(x)|k

Proof: Let k be non-Archimedean with the uniformizing parameter πk. Let πl
be the uniformizing parameter of l. Let qk = [ok : πkok] and ql = [ol : πlol].
Every element in l can be written uniquely in the form uπml for some m ∈ Z
and some uo×l . Let e be the ramification index of l/k and e is determined by
the relation πk = vπel for some v ∈ o×l . Let f be the residual degree of l/k.
That is, f is determined by the relation q1 = qf . From the above propositions,
we can say that

|πk|l = modl(πK) = modk(πK)n = |πK |nk = q−n

where n = [l : k]. With our choice of e and f , we get n = ef . Since the
uniformizing parameter is only unique up to a unit in the ring of integers, then
we can replace πk with v−1πk, so that πk = πel . As πel ∈ k, then

Nl/k(πel ) = πnk

and thus we state

|Nl/k(πel )|k = |πnk |k = 1
qn = 1

qef

Hence, from the definition, we have that

|πl|l = 1
q[1]

= 1
qf

�

Theorem 4.4.10 Let K be a number field. Then:

(i) For every x ∈ K∗ we have |xAK | = 1. It is usually called Artin’s product
formula
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(ii) The absolute value map |.|AK is surjective.

Since |.|AK is continuous and surjective map from IK to R×+ withK∗ ⊂ Ker(|.|AK ),
then the quotient group CK = IK/K∗ cannot be compact.

Definition 4.4.11 Let K be a algebraic number field. We define the ideles of
norm one to be

I1K := Ker(|.|AK )

As K∗ is a subgroup of I1K by the above theorem, we define the norm-one idele-
class group to be the quotient group C1

K = I1K/K∗.

The above theorem implies that the following sequence is short exact:

1→ C1
K = I1K/K∗

inc−−→ CK = IK/K∗
|.|AK−−−→ R× → 1

Theorem 4.4.12 Let K be a number field. The quotient group C1
K = I1K/K∗

is compact

Proof: See Ramakrishnan and Valenza [24], Chapter 5, Theorem 5-15.

�
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5 Tate’s Thesis

In this chapter, we have followed the presentation of Ramakrishnan and Valenza
[24], while also referring to Tate [27], Koch [16], Lang [19], and Kudla [18] for
some details and ideas.

5.1 Local Quasi-Characters and their Associated Local L-factors

Let F be a local field and let |.|F be the normalized absolute value, as defined
in previous chapter. The unit group F× of a local field F is the direct product
of o×F × V (F ), where o×F is the subgroup of F× of elements with absolute value
1 and

V (F ) = {y ∈ R×+ : y = |x|F ;x ∈ F×}

In the non-Archimedean case, o×F is the group of units in the ring of integers
of F , and V (F ) = qZ, where q is the order of residue field oF /poF for p as the
unique prime ideal in F .

Definition 5.1.1 A χ ∈ Hom(F×,C×) is unramified if it is trivial on the group
of units o×F of F .

Proposition 5.1.2 For every unramified quasi-character χ of F× there exists
a complex number s such that χ(α) = |α|sF for all α ∈ F×

Proposition 5.1.3 For every character χ of F× has the form

χ(x) = χ̃(x̃)|x|sF

where χ̃ is a unitary character of o×F , x̃ is the continuous homomorphism of F×

and o×F , and s ∈ C. The real part of s is uniquely determined by the quasi-
character, but the imaginary part of s is not, as |.|iτ for τ ∈ R is a unitary
character. We denote by σ the real part of s and call it the exponent of χ.

Proof: Let χ be a quasi-character and denote by χ̃ the restriction of χ to o×F .
Since o×F is compact, χ̃ is a continuous homomorphism of o×F into C×, then
χ̃(o×F ) is a compact subgroup of C× and hence is contained in S1. Thus, χ̃ is a
character of o×F . We can define the continuous homomorphism x 7→ χ(x)χ̃(x̃)−1

and is an unramified quasi-character of F×. Now using the result from previous
proposition, we have that χ(x)χ̃−1(x̃) = |x|sF for some s ∈ C.

�

Two quasi-characters are called equivalent if their quotient is an unramified
quasi- character. This relation certainly is reflexive, transitive, and symmetric,
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and hence an equivalence relation. Each equivalence class is isomorphic to the
space of unramified quasi-characters. We now will describe the space of quasi-
characters with the equivalence relation for the three types of local fields.

(i) If F = R, then he space of quasi-characters is a pair of complex-planes.

(ii) If F = C, then the space of quasi-characters is a countable set of complex
planes indexed by the integers.

(iii) If F is non-Archimedean, then the space of quasi-characters is a countable
set of cylinders

{s ∈ C : s ∼= s
′
ifs− s′ = m 2πi

log(q) ,m
′ ∈ Z}

Let us recall the Gamma function, which is given by the integral

τ(z) =

∫ ∞
0

e−ztz−1dt

Definition 5.1.4 Let F be a local field and let Hom(F×,C×)

(i) If F = C, then let

L(χs,n) = τC(s+ |n|
2 ) = (2π)−(s+

|n|
2 )τ(s+ |n|

2 )

(ii) If F = R and χ = χ̃|.|s, then let

L(χ) =

{
τR(s) = πs/2τ(s/2) χ̃ = 1

τR(s+ 1) χ̃ = sgn
(1)

(iii) If F is non-Archimedean, then let

L(χ) =

{
(1− χ(πF ))−1 χisunramified

1 otherwise
(2)

where πF is the uniformizing parameter, a generator of the unique maximal
ideal, p of F .

We have observed that each equivalence class of quasi-characters is a surface that
is isomorphic to the whole complex plane, or a quotient group of the complex
plane. Therefore, we can say that L(χ), for a given local field F , is a function
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on the domain of quasi-characters of F . In this way, it makes sense to say that
L(χ) is a meromorphic, nonzero, function of s ∈ C. Thus, on each equivalence
class of quasi-characters, L(χ) is a meromorphic function of s ∈ C.

Given any quasi-character χ of F× and a complex number s, the product χ|.|sF
is also a character. We define the shifted dual for χ as

χ̃ = χ−1|.|F

And thus

L((χ|.|sF )) = L(χ−1|.|F |.|F ) = L(1− s, χ−1)

5.2 Local Additive Characters and the Self-Duality of Local Fields

For understanding the self-duality of local fields, we will need to establish the
existence of a non-trivial additive character. We will now construct the standard
non-trivial additive characters for each of the local fields.

(i) (F = R) Let φ(x) = e−2πix. We have φ(x) 6= 1 if and only if x ∈ R− Z and
it is continuous.

(ii) (F = C) Let φ(x) = e−2πitrC/R(x), where trC/R(x) = x+ x = R(x). We have
φ(x) 6= 1 if and only if R(x) 6= Z. It can be verified easily that φ is a continuous
homomorphism of C into S1.

(iii) (F non-Archimedean). First, we will define a non-trivial character on Qp
for some rational prime p, and then use the trace map, which is additive, to
define a character on a finite extension of Qp.

Theorem 5.2.1 Let ψ be a fixed nontrivial unitary additive character of the
locally compact field F . The existence of such a character was shown above. For
each a ∈ F , define ψa : F → S1 by ψa(x) = ψ(ax). Then the map αψ : F → F̂
given by a 7→ ψa is a topological group isomorphism.

Proof: We start by proving that αψ is a well-defined map and, is an injective

group homomorphism of F into its Pontryagin dual F̂ . We have

ψa(x+ y) = ψ(a(x+ y))) = ψ(ax+ ay) = ψ(ax)ψ̇(ay) = ψa(x)ψ̇a(y)

As ψ is a homomorphism from F to S1, |ψa(x)| = 1. Since left multiplication by
a is a continuous map from F into itself, it is continuous and unitary character.
Similarly, we can define αψ, where it will be homomorphism of groups and it
will be trivial for a = 0. Thus, αψ is an injective group homomorphism for F

to F̂ .
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Recall that the topology of dual group is compact-open topology and so we can
define a neighbourhood of trivial character

W (C, V ) = {χ : χ(C) ⊆ V }

where C is a compact set of F and V is an open neighborhood of the identity
of S1. We can reformulate the neighborhood base of the trivial character as

W (Cm, ) = {χ : |χ(x)− 1| < ε;x ∈ Cm}

where we consider the compact sets of C as Cm = {x ∈ F : |x|F ≤ m} for m ∈ R
and neighbourhood base of identity of S1.Now we will simplify the topology of
the dual group in order to prove its continuity.

Since ψ is continuous, then for all ε > 0 there exists a δ > 0 such that |ψ(x)−1| <
ε whenever |x|F < δ. To show continuity of group homomorphism, we show that
for all W (Cm, ε), there exists a neighbourhood U = {y ∈ F : |y|F < δ/m} of 0
in F with αψ(U) ⊆W (Cm, ε). For all y ∈ U , we have

|αψ(y)(x)− 1| = |ψ(xy)− 1| < ε

for all x ∈ Cm because |yx|F = |y|F |x|F < δ. Thus, αψ(U) ⊆ W (Cm, ε), which
implies it is a continuous injective group homomorphism. Similarly, we can
show that its inverse is a continuous map from αψ(F ) onto F , which in turn
proves that αψ is a topological isomorphism onto its image.

From the propositions proved in previous chapters, lets recall that F̂ is locally
compact. Since αψ is an open map, which implies α(F ) will be open and thus

a closed subgroup of the locally compact group F̂ . Also recall that a closed
subgroup of a locally compact group is locally compact in the subspace topology.
Thus, αψ is surjective.

�

Proposition 5.2.2 Let G be a locally compact abelian group with Haar measure
dx, and let dχ be the dual measure. it is the measure on the Pontryagin Dual
Ĝ relative to which the Fourier inversion formula holds. Suppose that we have
an isomorphism α : G → Ĝ of topological groups. Then there exists a unique
measure mu such that µ = t · dx for some t ∈ R×+ and mu identifies as dual
measure under α. It can also be called as self-dual measure on G relative to the
isomorphism α

Proof: Let us recall the formula for Fourier Inversion Theorem of an f ∈ L1(G)
by
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f̂(y) =

∫
G

f(x)α(y)(x)dx

where α(y) is the unique character in Ĝ associated to y ∈ G. The Fourier

Inversion Theorem asserts the existence of measure such that
ˆ̂
f = f(−y) for

all f ∈ B(G) and y ∈ G. As the Haar measures are unique up to a constant,

then the Fourier inversion theorem implies that
ˆ̂
f = 1

t ·f(−y) for some constant
t defined relative to dx. Thus, if µ = t · dx, then µ identifies with the dual
measure of α.

�

5.3 Local Schwartz-Bruhat Functions

Definition 5.3.1 A complex-valued function f on F is smooth if it is C∞ when-
ever F is Archimedean, and locally compact otherwise. If F is non-Archimedean,
we say f is smooth if f(x) = f(x0) where x is sufficiently close to x0. In the
Archimedean case, a Schwartz function f on F is a smooth function such that
the function, together with all its higher derivatives, vanish at infinity faster
than any power of |x|. We say f is Schwartz function, if for any non-negative
integers N , M

supx∈F (1 + |x|)N | d
M

dxM
f(x)| <∞

A Schwartz-Bruhat function is a Schwartz function if F is Archimedean, and is
a smooth function with compact support if F is non-Archimedean. Let S(F )
denote the space of Schwartz-Bruhat functions.

Examples:

(i) If F is Archimedean, then fn(x) = xne−|x|
2

is a Schwartz-Bruhat function
for any nonnegative interger n.

(ii) If F is non-Archimedean, then the characteristic functions of compact sets
of F are Schwartz-Bruhat. Examples of compact sets of F are pn for n, a
non-negative integer, where p, the unique prime of F .

Proposition 5.3.2 For every f ∈ S(F ), F is non-Archimedean, there exists n,
m, −m ≤ n, such that f(x) = 0 for x /∈ p−m, and for x ∈ p−m, f(y) = f(x)
for all y ∈ x+ pn

Proof: Let x ∈ supp(f). Since f is locally constant, then there exists an open
neighborhood Ux of x such that f(Ux) = f(x). Moreover, since {pn}n∈N forms
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a neighbourhood basis for 0 ∈ F , then by homogeneity, we may take Ux =
x+ pn(x) for some n(x) ∈ N. Then there exists an open cover of supp(f). Since
the support of f is compact, then finite number of the Ux cover the support.
Thus, there exists x1, x2...xr ∈ supp(f) such that supp(f) ⊆ ∪ri=1Ux. let n =
minn(xi). Then supp(f) ⊆ ∪ni=1(x+pn). Now as the Heine-Borel theorem holds
for a non-Archimedean local field, then supp(f), which is compact, is bounded.
Also, every bounded set in F is contained in some pm.

�

5.4 The Meromorphic Continuation and Functional Equation of the
Local Zeta Function

Definition 5.4.1 For f ∈ S(F ) and χ ∈ Homcont(F
×,C×), we define the local

zeta function

Z(f, χ) =

∫
F×

f(x)χ(x)d∗x

Here Z(f, χ) is dependent on the multiplicative measure d∗x. if we fix an ad-
ditive measure dx and choose d∗(x) = dx/|x|F , then Z(f, χ) will be dependent
on dx.

Recall, Z(f, χ) is a function on the domain of quasi-characters of F . Since
each equivalence class of quasi-characters is a surface that is isomorphic to
either the whole complex plane or a quotient group of the complex plane, then
we may speak of the analytic continuation from one subset of an equivalence
class to a larger subset. In the next theorem, we first will show that Z(f, χ)
is a holomorphic and absolutely convergent function in the domain of quasi-
characters of exponent (σ = R(s)) greater than 1. We will also show the analytic
continuation of the zeta function to a function in the domain of quasi-characters
of all exponents.

Theorem 5.4.2 Let f ∈ S(F ), and χ = χ̃|.|s where χ̃ is the unitary part of the
quasi-character χ. Let σ = R(s). Then the following statements hold:

(i) Z(f, χ) = Z(f, χ̃, s) is holomorphic and absolutely convergent if σ > 0.

(ii) If 0 < σ < 1, then there is a functional equation

Z(f̂ , χ̇) = γ(χ, ψ, dx)Z(f, χ)

for some γ(χ, ψ, dx), which is independent of f and meromorphic as a function
of s.
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(iii) There exists a factor ε(χ, ψ, dx) that lies in C× for all s and satisfies the
relation

γ(χ, ψ, dx) = ε(χ, ψ, dx)L(χ̇)L(χ)

therefore the relation

L(χ)Z(f̂ , χ̇) = ε(χ, ψ, dx)L(χ̇)Z(f, χ)

illustrates that the poles of Z(f, χ) are similar to L(χ), which is independent of
f . Thus, L(χ) = Z(f0, χ) for some suitable f0

Proof: Refer to Chapter 7 in Ramakrishnan and Valenza [24]

�

Definition 5.4.3 For any multiplicative character ω : o×F → S1 and an additive
character λ : oF → S1, define to be Gauss Sum to be

g(ω, ψ) =

∫
o×F

ω(u)λ(u)d∗u

The generalization of Gauss sums was an important part of Tate’s thesis. A
Gauss sum will be appear in the epsilon factor for ramified quasi-characters.

Lemma 5.4.4 Let ω and λ be taken as above with conductors pn and pr re-
spectively. Let c > 0 be the number such that d∗dx = cdx. Then the following
statements hold :

(i) If r < n, then g(ω, λ) = 0

(ii) If r = n = 0, then |g(ω, λ)|2 = V ol(o×F , d
∗x)2

(iii) If r = n, then |g(ω, λ)|2 = cV ol(oF , dx)V ol(Ur, d
∗x)

(iv) If r > n, then |g(ω, λ)|2 = cV ol(oF , dx)(V ol(Ur, d
∗x)− q−1V ol(Ur−1, d∗x))

Proof: If r = n = 0, then ωo×F
= 1 and λ|o×F = 1. Therefore, we have

g(ω, ψ) =

∫
o×F

ω(u)λ(u)d∗u = V ol(o×F , d
∗x)
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And hence |g(ω, λ)|2 = V ol(o×F , d
∗x)2. Let R be a residue system of o×F /Uro

×
F

in o×F . For a ∈ R and 1 + bπrF ∈ Ur we have

λ(a(1 + πrF b)) = λ(a)λ(aπrF b) = λ(a)

because pr = πrF oF is the conductor of λ. Then

g(ω, λ) =
∑
a∈R

λ(a)ω(a)

∫
Ur

ω(u)d∗u

if r < n, then there exists an element u0 ∈ Ur such that ω(u0) 6= 1. Using the
invariance of multiplicative Haar measure, we obtain

∫
Ur

ω(u)d∗u =

∫
Ur

ω(uu0)d∗u = ω(u0)

∫
Ur

ω(u)d∗u = 0

This proves (i). Suppose r ≥ n. Applying the transformation x = zy and
translation invariance of the Haar measure, we obtain

g(ω, ψ) =

∫
o×F

ω(x)λ(x)d∗x ·
∫
o×F

ω(y)λ(y)d∗y =

∫
o×F

ω(z)h(z)d∗z

where

h(z) =

∫
o×F

λ(y(z − 1))d∗y

For z − 1 ∈ pr and y ∈ oF , we have that λ(y(z − 1)) = 1. On the other hand, if
z−1 ∈ {pr−pr−1}, then there exists a y0 ∈ o×F ⊂ oF such that λ(y0(z−1)) = 1.
Thus, we obtain

h(z) =


c(1− q−1)V ol(oF , dx) z − 1 ∈ pr

−cq−1V ol(oF , dx) z − 1 ∈ {pr−1 − pr}
0 otherwise

(3)
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Using the above information and applying it to |g(ω, λ)|2, parts (ii) and (iii)
now follow at once.

�

With the knowledge of the above lemma, we can do some computations of
Z(fn, χs,n) for n > 0. As the conductor of ψ is p−d, then the conductor of ψπk
is p−d−k. before the lemma it was determined that

Z(fn, χs,n) =
∑
k=−d−n q

−ksg(χ̃, ψπkF )

where χ̃ has conductor pn. From part (i) of the above lemma, we have g(χ̃, ψπkF ) =
0 for all k > −d− n. Therefore,

Z(fn, χs,n) = q(d+n)sg(χ̃, ψπ−d−nF
)

Now as both χ̃ and ψπ−d−nF
have conductor pn, then from part (ii) and (iii) of

the above lemma, we can say that g(χ̃, ψπ−d−nF
) 6= 0. Thus, Z(fn, χs,n) is an

exponential function with neither zeroes or poles. Lets recall that for n > 0,
L(χs,n) is 1 because χs,n is not ramified. Thus,

Z(fn, χs,n) = q(d+n)sg(χ̃, ψπ−d−nF
)L(χs,n)

Now let us find out the Fourier transform of our function f

Lemma 5.4.5 For n = 0, we have f̂0(y) = V ol(p−d, dx)1oF (y), where 1oF (y) is

the characteristic function of oF . For n > 0, we have f̂n(y) = V ol(p−d−n, dx)1pn−1(y),
where 1pn−1(y) is the characteristic function of pn − 1.

Proof: By definition,

f̂n(y) =

∫
F

fn(x)ψxydx =

∫
p−d−n

ψ(x)ψ(xy) =

∫
p−d−n

ψ(x(y + 1))dx

First, let n = 0. The conductor of ψ is p−d. For y /∈ oF , we have ψ(x(y + 1))

is non-trivial for some x ∈ p−d, hence f̂(y) = 0 by orthogonality of characters.

On the other hand, y ∈ oF , ψ(x(y + 1)) = 1 for all x ∈ p−d, hence f̂(y) =
V ol(p−d, dx). Similarly, we repeat the steps for n > 0, and we can establish

that f̂(y) = V ol(p−d−n, dx)

�
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5.5 Local Epsilon Factor and Root Number

As we have observed the local epsilon factor in Theorem 5.4.2, here we will
state a Proposition for the dependence of epsilon factor ε(χ, ψ, dx) on both the
additive character ψ and Haar measure dx for any χ ∈ Hom(F×,C×)

Proposition 5.5.1

(i) For every real number t,

ε(χ, ψ, t · dx) = t · ε(χ, ψ, dx)

(ii) Let a ∈ F× and let ψ(a) be the character defined as ψa(x) = ψ(ax). Then

ε(χ, ψa, dx) = χ(a)|a|−1F ε(χ, ψ, dx)

(iii) Let F be a non-Archimedean field with unique prime ideal p, and let pn

and p−d be the conductors of χ and ψ, respectively. Then for every unramified
character v of F× we have

ε(χv, ψ, dx) = v(πd+n)ε(χ, ψ, dx),

where π is the uniformizing parameter for oF

(iv)

ε(χ̇, ψ, dx) = χ(−1)
ε(χ,ψ,dx)

(v)

ε(χ, ψ, dx) = χ(−1)ε(χ, ψ, dx)

Proof: (i) Since the Fourier transform of a self-dual local field is dependent on
the Haar measure, dx chosen for F and the additive character, ψ, chosen, then
we will denote the Fourier transform of a function f ∈ S(F ) by (f̂ , ψ, dx). By
definition we have that

(f̂ , ψ, tdx) =

∫
F

f(x)ψ(xy)tdx = t

∫
F

f(x)ψ(xy)dx = t(f̂ , ψ, dx)
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Although, Z(f, χ) is dependent on d∗x, therefore on dx we set d∗x = dx/|x|F ,

the ratio Z(f̂ , χ̇)/Z(f, χ) is independent of the measure chosen, whether we
specify the multiplicative measure independent of dx or not. Therefore, we
have

Z(f̂ ,ψ,dx),χ̇,tdx
Z(f,χ,tdx) = tZ(f̂ ,ψ,dx),χ̇,dx

Z(f,χ,tdx)

Hence, we have

ε(χ, ψ, t · dx) = t · ε(χ, ψ, dx)

(ii) With the same notation in part (i), the results follows with similar steps

(iii) Since v is unramified, then there exists an s
′ ∈ C such that v = |.|s

′

F . We
also know that, χ = |.|sF χ̃ for some s ∈ C and unitary χ̃, the restriction of χ to
oF , with conductor pn. The conductor of χv is the same as the conductor of χ
since v is unramified. As in the local computations, we write χv = χs+s′ ,n. If
n = 0, then

ε(χs+s′ ,0, ψ, dx) = q−d(s+s
′
−1)V ol(oF , dx)

Now for n > 0

ε(χs+s′ ,n, ψ, dx) = q−d(s+s
′
−1)q−n(s+s

′
)V ol(oF , dx)

∑
x∈U/Um χ̃ψπ−d−nF

(x) =

v(πd+nF )ε(χs,n, ψ, dx)

For (iv) and (v), the result follows by applying the part (ii) of Theorem 5.4.2
and translation invariance of Haar measure.

�

Definition 5.5.2 Let F be a local field with standard non-trivial character ψ
and self-dual measure dx. For a unitary character χ̃ of F×, one defines the root
number W (χ̃) by

W (χ̃) = ε(χ̃|.|1/2F , ψ, dx)

Proposition 5.5.3 |W (χ̃)| = 1

Proof: The result follows from the parts (iv) and (v) of the above proposition.
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5.6 Adelic Schwartz-Bruhat Functions and the Riemann-Roch Theo-
rem

One of the most important and useful results of abelian harmonic analysis is
the Poisson summation formula, which relates the averages of a function over a
lattice to its Fourier transform. The Poisson summation formula will help us to
establish the global functional equation.

Definition 5.6.1 Let K be a global field. Let v be a place of K and Kv be the
completion of K with respect to v. Define

S(AK) = ⊗′vS(Kv) = {f = ⊗fv : fv ∈ S(Kv)∀v; fv = 1ov}

where 1ov is the characteristic function of ov. A function f ∈ S(AK) is called
an Adelic Schwartz-Bruhat function.

According to the Proposition in adeles chapter, we can write

f(x) =
∏
v fv(xv)

for all x = (xv) ∈ AK .

Proposition 5.6.2 For each place v of K, let ψv be the standard unitary char-
acter on Kv. Then the restriction of ψv to ov is trivial for almost all v. Hence

ψK
(∏

v xv) =
∏
v ψv(xv) for x = (xv) ∈ AK

is a well-defined non-trivial character on the adeles. Furthermore, ψ(α) = 1 for
α ∈ K

Proof: Recall that the conductor of ψv is the inverse different of Kv. Since the
inverse different is trivial for all but finitely many places v, then ψv|ov = 1 for
all but finitely many places v, and hence

∏
v ψv is a well defined character on

AK . Firstly, us first restrict ourselves to K = Q in order to show that ψ is
trivial on the embedding of K = Q into AQ. Recall that if α ∈ Q, then there is
a unique expansion of the form

α =
∑
p
ap
pvp + b

where ap, vp, b ∈ Z and ap = 0 for all but finitely many primes. Applying this
unique representation, we get
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ψQ(α) =
∏
p ψp(α) = ψ∞(a)

∏
ψp(

ap
pvp ) = e−2πia

∏
p e

2πap

p
vp = e−2πb = 1

We also know that

∑
v|p trKv/Qp(.) = trK/Q(.)

See Neukrich’s text, Algebraic Number Theory

Then, for a finite extension K of Q, we have

ψK(α) =
∏
p

∏
v|p ψp(trKv/Qp(α)) =

∏
v ψp(trK/Q(α)) = 1

�

Definition 5.6.3 Let f be a complex-valued function on AK such that both f̂

and
ˆ̂
f are normally convergent; both are absolutely and uniformly convergent

on compact sets. Then we say that f is admissible.

Lemma 5.6.4 All f ∈ S(AK) are admissible.

Proof: Let f ∈ S(AK). Let C be compact set of AK . We know that compact
sets of local field Kv are of the form pnvv where p is the unique prime ideal of
Kv and nv ∈ Z.

∏
V ∈Sω Cv ×

∏
V ∈S p

nv
v ×

∏
V /∈S∪Sω ov

where S is the finite set of finite places such that f |ov 6= 1 and Sω is set of
infinite places. Since the characteristic functions of pmvv generate S(Kv), so we
can assume that fv for all v ∈ S are characteristic functions. Suppose that
f(γ + z) 6= 0 for some z ∈ C and γ ∈ K. Since we assumed that for all v ∈ S,
fv is a characteristic function of pmvv , then the vth components of γ + z ∈ AK ,
v ∈ S are necessarily in pmv for all v ∈ S. Consequently, γ ∈ pmv − zv ⊂ pkvv
for all v ∈ S. Therefore,

|f̂(z)| = |
∑
γ∈K f(γ + z)| ≤

∑
γ∈K

∏
v |fv(γ + zv)| =

∑
γ∈I |fω(γ + zω)|

where

fω =
∏
v∈Sω fv ∈ S(

∏
v ∈ SωKv)

In the previous chapter, we have show that K is discrete subgroup of AK , which
means the fractional ideal I will be a discrete subgroup of

∏
v∈Sω Kv, where Kv
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is isomorphic to R or C. We have also shown that Fourier transform maps
S(AK) to S(AK). Thus, f̂ is normally convergent.

�

Now we shall proceed to prove the Poisson Summation Formula.

Theorem 5.6.5 Let f ∈ S(AK). Then f̃ =
ˆ̃
f ; that is

∑
γ∈K f(γ + x) =

∑
γ∈K f̂(γ + x)

for all x ∈ AL

Proof: If φ ∈ AK is a K-invariant, then φ induces a function on AK/K. So we
can apply Fourier transform φ : AK/K → C on K,as it is dual group of AK/K.
For all z ∈ K

φ̂(z) =

∫
AK/K

φ(t)ψK(tz)dt

where dt is the quotient Haar measure on compact group AK/K induced by dt
on AK . The quotient measure dt is characterised by the relation

∫
AK/K

f̃(t)dt =

∫
AK/K

( ∑
γ∈K

f(γ + t))dt =

∫
AK

f(t)dt

for all continuous and admissible functions f on AK . In order to proceed, we
will establish two lemmas.

Lemma 5.6.6 For every f ∈ S(AK), we have

f̂ |K =
ˆ̃
f |K

Proof: Let us fix z ∈ K. Using the fact ψK |K = 1, then by definition, we have

ˆ̃
f(z) =

∫
AK/K

f̃(t)ψK(tz)dt =

∫
AK/K

( ∑
γ∈K

f̃(γ + t))ψK(tz)dt
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=

∫
AK/K

( ∑
γ∈K

f̃(γ + t)ψK(γ + t)z))dt =

∫
AK

f(t)ψK(tz)dt = f̂(z)

�

Lemma 5.6.7 For every f ∈ S(AK), and x ∈ K, we have

f̃(x) =
∑
γ∈K

ˆ̃
f(γ)ψK(γx)

Proof: As f̂ |K =
ˆ̃
f |K , then

|
∑
γ∈K

ˆ̃
f(γ)ψK(γx)| = |

∑
γ∈K f̂(y)ψK(γx)| ≤

∑
γ∈K |f̂(γ)|

where ψK is unitary. Therefore, the expression on the right-hand side of the
lemma is normally convergent, since f ∈ S(AK) is admissible. Also,

∑
γ∈K

ˆ̃
f(γ)

is convergent for the same reason. Since K is discrete, then

∑
γ∈K

ˆ̃
f(γ)ψK(γx)

is the Fourier transform of
ˆ̃
f at −x, and from Fourier Inversion Theorem, we

know that
ˆ̂
f̃(−x) = f̃(x). Thus, the lemma is proved.

�

Let us return to the proof of the Poisson summation formula. Applying the
second lemma with x = 0 and then the first lemma, we obtain

f̃(0) =
∑
γ∈K

ˆ̃
f(γ)ψK(0) =

∑
γ∈K

ˆ̃
f(γ) =

∑
γ∈K f̂(γ)

Since f̃(0) =
∑
γ∈K f(γ), then

∑
γ∈K f(γ) =

∑
γ∈K f̂(γ)

44



�

We now will proceed with the number field analogue of the geometric Riemann-
Roch Theorem.

Theorem 5.6.8 (Riemann-Roch) Let x ∈ IK . Let f ∈ S(AK). Then

∑
γ∈K f(γx) = 1

|x|AK

∑
γ∈K f̂(γx−1)

Proof: Let us fix an x ∈ IK . Since, f is admissible, then we define fx(y) = f(xy),
is in S(AK), is admissible. So, the sum on the left is normally convergent. The
Poisson summation formula applied to fx yields

∑
γ∈K fx(γ) =

∑
γ∈K f̂x(γ)

Upon computing the Fourier transform of fx, we have

f̂x(γ) =

∫
AK

f(xy)ψK(yγ) =
1

|x|AK

∫
AK

f(y)ψK(yx−1γ)dy =
1

|x|AK
f̂(γx−1)

This completes the proof.

�

5.7 Idele-Class Characters

Proposition 5.7.1 Every idele-class character χ has the factorization χ = χ̃|.|s
where χ̃ is a unitary character.

Proof: Let χ ∈ Hom(IK/K∗,C×). Let v∞ be the infinite place of K. Suppose
we have a subgroup V (IK) = {(tv∞ , 1, 1, ...) : tv∞∈R×+

} of IK . Thus, we have a

map |.|AK = V (IK)→ R×+ is an isomorphism. Since we uniquely can write any
idele in the form x = |x|AK ·y where y ∈ I1K , then the map φ : V (IK)×I1K → IK ,
defined by (α, β) 7→ αβ is an isomorphism. Moreover, we have the short exact
sequence

1→ C1
K = I1K/K∗ → CK = IK/K∗ → V (IK) = R×+ → 1

Recall that C1
K is compact. Since the quasi-character is continuous, it will form

a compact subgroup and will be contained in S1. Therefore, χ|I1K/K∗ = χ̃ is

a unitary character on I1K/K∗. Now, χ̃−1χ, by definition, is trivial on I1K/K∗.
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Therefore, an arbitrary quasi-character on CK is of the form α 7→ χ̃(ã)|α|s,
where α̃ is characterized by the relation α = α̃β for some unique β ∈ C1

K .

�

An idele-class character, χ, is called unramified if χ|I1 = 1. We say that two
idele-class characters are equivalent if their quotient is unramified. Each equiv-
alence class is of the form

{χ̃|.|s : s ∈ C}

for some fixed unitary character χ̃

5.8 The Meromorphic Continuation and Functional Equation of the
Global Zeta Function

Let K be a number field and let ψK the standard adelic character. Let dxv be
the self-dual additive measure with respect to ψv. We set

d∗xv = qv
qv−1 ·

dxv
|xv|v

as the Haar measure of the multiplicative group of the completion of K with
respect to finite places, v, of K.

Definition 5.8.1 Let χ ∈ Hom(IK/K∗,C×). For f ∈ S(AK), define global
zeta function by

Z(f, χ) =

∫
IK
f(x)χ(x)d∗x

Here f will be necessarily continuous on IK as its restricted direct product
topology is stronger than the subspace topology induced by AK .

Recall that the local zeta function was a function on the domain of quasi-
characters of a local field F ,similarly, Z(f, χ) is a function on the domain of
idele-class characters of a given number field K. In the following theorem, we
first will prove that Z(f, χ) is absolutely and uniformly convergent on the do-
main of idele-class characters of exponent greater than 1. Then we will prove
that in the equivalence class of unramified characters, Z(f, χ) can be mero-
morphically continued to the whole s-plane with two simple-poles at s = 0
and s = 1. Thus, on all other equivalence classes, Z(f, χ) can be analytically
continued to the whole s-plane.
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Theorem 5.8.2 For all idele-class characters χ = χ̃|.|s and f ∈ S(AK), the
global zeta function Z(f, χ) is normally convergent in σ = R(s) > 1. Further-
more, Z(f, χ) extends to a meromorphic function of s and satisfies the unctional
equation

Z(f, χ) = Z(f̂ , χ̇)

The continuation is entire in all classes of idele-class characters except for the
class of unramified characters, which is given by the set

{χ ∈ Hom(IK/K∗,C×) : χ̃ = |.|−iτ ; τ ∈ R}

For a given class representative χ = |.|s−iτ , Z(f, |.|s−iτ ) has simple poles at
s = iτ and s = i+ iτ , with corresponding residues given by

−V ol(C1
K)f(0) and V ol(C1

K)f(0)f̂(0)

respectively. The volume of C1
K is taken with respect to the quotient measure on

CK defined by both d∗x and the counting measure on K∗.

Proof: Since f ∈ S(AK), then fv is the characteristic function of ov for all but
finitely many finite places v of K. Let S be the finite set of finite places for
which fv ∈ S(Kv) is not a characteristic function of ov. For all finite places v
of K, let pv be the unique prime of Kv and let πv be a uniformizing parameter
of pv. We may take fv for v ∈ S to be a characteristic function of pmvv = πmvv ov
by linearity and translation invariance of the Haar measure. Let Sω be the set
of infinite places of K. As such, the product

∏
v

cv

∫
Kv−{0}

|fv(xv)||xv|σ−1v dxv

where cv = qv/qv − 1 for finite places and cv = 1 for infinite places. Recall from
part (i) of Theorem 5.4.2, for Archimedean fields, we showed that

∫
Kv−{0}

|fv(xv)||xv|σ−1v dxv

is finite for σ > 0. Since the number of infinite places is finite, then the prod-
uct of the Archimedean integrals is equal to some positive real M . For non-
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Archimedean fields, we can use the result from product of integrals to deter-
mine the convergence of the global zeta function, which is given by the infinite
product

∏
V /∈S∪Sω

1
1−q−σv

An infinite product of complex numbers is said to converge if the sequence of the
partial products has nonzero limits. If we fix the principal branch of logarithm,
then

∏∞
n=1 an converges if and only if the series

∑
n=1 logan converges , where

log denotes the principal branch of the logarithm. See Alfhors, Complex Anal-
ysis Chapter V 2.2 ([1]). A product is called absolutely convergent if the series
converges absolutely. Therefore, in order to determine the region of convergence
of the product

∑
V /∈S∪Sω log

(
1

1−q−σv
) =

∑
V /∈S∪Sω

∑∞
m=1

q−mσv

m

Hence, by using p-test,we can say that the above function converges. Now since,
Z(f, χ) is convergent, by using the proposition from ideles and adeles chapter,
we find that Z(f, χ̃, s) is normally convergent in σ = R(s) > 1. In order to show
that Z(f, χ) is holomorphic for σ > 1, we need to just exchange the order of the
derivative d/ds and the integral.

Now moving to the second part of the theorem. if we fix K at an infinite place,
tehn IK ∼= R×+ × I1K . Now if σ > 1, then applying the Fubini’s Theorem with
both f ∈ S(AK) and σ ≥ 1, we obtain

Z(f, χ) =

∫
IK
f(x)χ(x)d∗x =

∫∫
R×+×I1K

f(tx)χ(tx)
dt

t
d∗x

where the product tx takes place at the fixed infinite component of x. We define

Zt(f, χ) =

∫
IK
f(tx)χ(tx)d∗x

We will now apply Riemann-Roch theorem to establish a functional equation
for above

Proposition 5.8.3 The function Zt(f, χ) satisfies the relation
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Zt(f, χ) = Zt−1(f̂ , χ̇) + f̂(0)

∫
C1
K

χ̇(x/t)d∗x− f(0)

∫
C1
K

χ(tx)d∗x

Proof: By definition, C1
K = I1K/K∗. Since K∗ is discrete in I1K , then the Haar

measure on K∗ is the counting measure. Then

Zt(f, χ) =

∫
C1
K

( ∑
a∈K∗

f(atx)χ(atx))d∗x =

∫
C1
K

( ∑
a∈K∗

f(atx))χ(tx)d∗x

since χ|K∗ = 1 by hypothesis. To apply the Riemann-Roch theorem, we need
to sum over K, not K∗. So, we get

Zt(f, χ) + f(0)

∫
C1
K

χ(tx)d∗x =

∫
C1
K

( ∑
a∈K∗

f(atx))χ(tx)d∗x

Applying the Riemann-Roch theorem to the sum on the right-hand side and
then using the change of variable x to x−1, we get∫

C1
K

( ∑
a∈K∗

f(atx))χ(tx)d∗x =

∫
C1
K

( ∑
a∈K∗

f̂(at−1x−1))
χ(tx)

|tx|AK
d∗x

=

∫
C1
K

( ∑
a∈K∗

f̂(at−1x))|t−1x|AKχ(tx−1)d∗x

= Zt−1(f̂ , χ̇) + f(0)

∫
C1
K

χ̇(tx)d∗x

(4)

since χ̇ = χ−1|.|. This completes the proof of the Proposition. �

Now returning back to our theorem. We will split the zeta function in the
following way:

Z(f, χ) =

∫ 1

0

Zt(f, χ)
1

t
dt+

∫ ∞
1

Zt(f, χ)
1

t
dt

We see that
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∫ ∞
1

Zt(f, χ)
1

t
dt =

∫
x∈IK

f(x)χ(x)d∗x

The integral on the right-hand side is normally convergent for σ > 1. Therefore,
the integral is normally convergent for all s ∈ C. We now will use the functional
equation for Zt(f, χ) to investigate the integral from 0 to 1. By applying the
change of variable t→ t−1 like before , we get

∫ 1

0

Zt−1(f̂ , χ̇)
1

t
dt =

∫ ∞
1

Zt(f̂ , χ̇)
1

t
dt

which is convergent for all σ by the argument above. Now we have to analyze

R(f, χ) :=

∫ 1

0

f̂(0)χ̇−1
∫
C1
K

χ̇(x)d∗x
1

t
dt−

∫ 1

0

f(0)χ(t)

∫
C1
K

χ(x)d∗x
1

t
dt

There are two cases to consider : (i) if χ is nontrivial in IK and (ii) if χ = χ̃|.|s.
In either case, we have

Z(f, χ) =

∫ ∞
1

Zt(f̂ , χ̇)
1

t
dt+

∫ ∞
1

Zt(f, χ)
1

t
dt+R(f, χ)

We have that
ˆ̂
f(x) = f(−x), since dx is self-dual relative to ψK on AK . In

addition, ˙̇χ = χ by definition. Applying these two facts, we obtain

Z(f̂ , χ̇) =

∫ ∞
1

Zt(f̂ , χ̇)
1

t
dt+

∫ ∞
1

Zt(
ˆ̂
f,˙̇χ)

1

t
dt+R(f̂ , χ̇)

We observe that R(f, χ) = R(f̂ , χ̇). Furthermore, χ is idele class character,
hence trivial on K∗, so χ(−tx) = χ(tx). Thus, we have

Z(f, χ) = Z(f̂ , χ).
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5.9 Hecke L-Functions

Let χ ∈ Hom(IK/K∗,C×) (an idele-class character), for a number field K.
We have seen from the propositions in previous chapter that χ can be written
as χ̃|.|sAK where χ̃ is the unitary character and s ∈ C. We can define a local
character

χv : K∗v → C×

t 7→ χ{1, 1, ..1, t, 1, , , 1}

where t is the vth component. Then χv =
∏
v χv(y).

Definition 5.9.1 We define the global L-function of χ in terms of its local
versions by the product expansion

L(χ) =
∏
v L(χv)

whenever this is convergent.

Lemma 5.9.2 L(χ) is absolutely convergent, nonzero, and holomorphic when-
ever the exponent σ = R(s) of χ is greater than 1

Proof: L(χ) is nonzero because L(χv) is nonzero for all quasi-characters χv. We
can write χ = χ̃|.|s with σ = Rs. By definition we have that L(χv) = 1 if v is
a finite place and χv is ramified. Since χv|ov = 1 for all but finitely many finite
places, then χv is unramified for almost all v. In addition, there are only a finite
number of non-Archimedean places, v; L(χ, v) is holomorphic for all R(s) > 0
since they come from gamma functions. In order to show that the product is
convergent for σ > 1, then we must show that the logarithm of the product
converges for σ > 1. This result was obtained in the previous chapter. Thus,
the result follows.

�

Definition 5.9.3 Let χ ∈ Hom(IK/K∗,C×) (an idele-class character). For a
complex s, define the complex Hecke L-function L(s, χ) by

L(s, χ) = L(χ|.|s)

Let us consider the trivial idele-class character χ = 1. Note that χ = 1 belongs
to the class of unramified idele-class characters. Then
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L(s, 1f ) =
∏

vfinite

1

1− |πv|s
=

∏
vfinite

1

1−N(pv)−s

where pv is the unique prime associated to the completion of K at v and N is
the absolute norm. Thus, N(pv) = [oK : pvoK ] = [ov : pvov] = qv.

For an arbitrary number field K, L(s, 1f ) is called the Dedekind zeta function
of K and is denoted ζK(s).

For K = Q, then, for R(s) > 1, we have that

L(s, 1f ) =
∏
p

1

1− p−s
=
∑
n≥1

1

ns

is the Riemann zeta function.

Theorem 5.9.4 Let χ be a unitary idele class character. Then L(s, χ), which
is a priori defined and holomorphic in R(s) > 1, admits a meromorphic contin-
uation to the whole s-plane, and satisfies the functional equation

L(1− s, χ̃) = ε(s, χ̃)L(s, χ̃)

where

ε(s, χ̃) =
∏
v ε(χ̃v|.|s, ψv, dxv) ∈ C×

for some choice of self-dual pair. The global epsilon factor is, in fact, indepen-
dent of the this pair.

Proof: Refer Chapter 7, Theorem 7-19 in Ramakrishnan and Valenza [24]

�

5.10 The Volume of C1
K and the Regulator

Let K be a number field. Our main goal is to compute the V ol(C1
K). Recall

that the volume of V ol(C1
K is taken with respect to the quotient measure on

CK , defined by d∗x and the counting measure on K∗.
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Let us define |.|v for all completions of K at v. For a finite set S of places of K,
let us define the set of S-ideles of K by

IK,S = {x = (xv) ∈ IK : |xv|v = 1;∀v /∈ S}

If S = ∅, then IK ⊆ I1K . However, even if S is not the empty-set, then we define
the norm-one version of the S-ideles by

I1K,S := I1K ∩ IK,S

We will follow Ramakrishnan and Valenza [24], Chapter 7, Section 4, and will
find the volume in three steps.

Step One : Let us assume that S is nonempty. We know that K∗ is a subgroup
of I1K , but not necessarily of I1K,S . Consider the following projection map

ρ : C1
K = I1K/K∗ → (I1K/K∗)/(I1K,S ·K∗/K∗)

Clearly, Kerρ : I1K,S ·K∗/K∗. Thus, we can obtain a short exact sequence of
abelian groups.

1→ I1K/K∗ ∩ I1K,S → C1
K → CK,S → 1

Let hS denote the order of CK,S . Therefore,

V ol(C1
K) = hSV ol(I1K/K∗ ∩ I1K,S)

We now are reduced to computing the volume of the second factor.

Step Two : Take S = S∞ as the set of Archimedean places of K. Let r1 be the
number of real places. Let r2 be the number of complex places (one half of the
number of conjugate embeddings). Let |.| denote the usual complex absolute
value, which restricts to the usual real absolute value. Define

λ : IK,S∞ → Rr1+r2

(xv) 7→ log|(xv)|v∈S∞

Then we have

λ((xv · yv)v) = (log(|xv · yv|))v∈S∞ = (log(|xv|) + log(|yv|))v∈S∞ =
λ((xv)) + λ((yv))
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Therefore, λ is a homomorphism of groups. Let H denote the hyperplane in
Rr1+r2 given by

H := {t = (tv) ∈ Rr1+r2 :
∑
vreal tv + 2

∑
vcomplex tv = 0}

This construction is analogous to the Minkowski lattice theory used to prove
Dirichlet’s unit theorem. See Neukirch [23], Chapter 1, Sections 4, 5, and 7, for
a proof of the Dirichlet’s unit theorem.

Lemma 5.10.1 The logarithm map has the following properties:

(i) Im(λ) = H

(ii) Ker(λ) = I1K,∅(= IK,∅)

�

Let us define RS := K ∩ AK,S , the ring of S-integers of K, where

AK,S = {x ∈ AK : xv ∈ ov,∀v /∈ S}

Then R∞ = K ∩ AK,S∞ consists of the elements that are in ov for all finite
places v. Since ov =

⋂
vfinite ov, then RS∞ = oK . Therefore,

R×S = K∗ ∩ IK,S

which implies o×K = R×S∞ = K∗ ∩ I1K,S

Definition 5.10.2 We will call the restriction of λ to K∗ ∩ I1K,S∞ = o×K the
regulator map and denote as reg(x). The above lemma tells us that

Ker(reg) = K∗ ∩ I1K,∅

Step Three : By definition, IK,∅ admits the product decomposition

∏
vreal ov ×

∏
vcomplex ov ×

∏
vfinite ov

Let us construct the product Haar measure d×x on I1K,∅ as follows:

(i) For v real, we let d×xv be a counting measure on o×v = {±1}

(ii) For v complex, we let d×xv be the Lebesgue measure on o×v = S1.
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(iii) For v finite, we let d×xv = d∗xv, the normalized measure on K∗v , such that
V ol(o×v , d

∗xv) = N(Dv)
−1/2, where Dv is different of Kv.

Then,

V ol(ov) =


2 forvreal

2π forvcomplex

N(D)−1/2 forvfinite

(5)

we get relative to this measure,

V ol(IK,∅, d×x) = 2r1(2π)r2 |dK |1/2

Let K be a number field. hk is the class number of K and where RK is the
regulator of K. Thus, from the above equations, we can say that

V ol(C1
K) = 2r1 (2π)r2hKRK

wK
√
|dK |
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