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1 Introduction

Algebraic Number Theory is a study of algebraic number fields, which are finite
extensions of Q. We investigate the arithmetic properties of algebraic number
fields such as ring of integers, ideals, units, unique factorization etc.

Class Field Theory is the study of abelian extensions of algebraic number fields.
These abelian extensions of a field are the Galois extensions of the field with
abelian Galois groups.

There are two types of field K that we study in class field theory: local field,
Qp or Fp((t)) or their finite extensions and global fields, Q or Fp(t) or their
finite extensions. In this paper, we shall discuss the local field Qp and its finite
extension K. We shall also refer it to as p-adic local field.

Local Class Field theory is study of abelian extensions of local fields. The local
Artin Reciprocity Map is an isomorphism

θ/k : K× −→ Gal(Ksep/K)ab

The study of class field theory was started after the Kronecker-Weber Theorem
on abelian extensions of Q. In 1850s, Hilbert proved and built upon the works
of Kronecker and Weber. From 1890s to 1920s, there was a lot of development
in generalizing number fields. Weber formulated the notions of ray class groups
and class fields. Takagi proved that the class fields were the abelian extensions
of those given fields. Artin gave a conjecture about reciprocity map and proved
it in 1920s and thus established the global class field theory. By 1980s, abelian
class field theory had been successfully extended to higher dimensions as well.
For non-abelian extensions, it started with ideas of Langland after his letter to
Weil in 1967. In this paper, we will only focus on the abelian extensions.
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In the modern approach to class field theory, it is stated in terms of ideal class
groups and proved using group cohomology. This approach was introduced after
the results obtained from the classical approach of Lubin and Tate. In 1930s,
Chevalley introduced the notion of adeles and ideles in class field theory. Group
cohomology was also being studied in 1930s and 40s. Hochschild and Nakayama
reformulated the class field theory in terms of group cohomology and homology
in 1950s. Later, Tate introduced the Tate cohomological groups which helped
in simplifying the cohomological arguments.

The goal of this paper is to understand the main statements of local class field
theory and prove them using cohomology. In the next few sections, we will revise
the prerequisites needed and present the statement of local class field theory. In
the final section, we prove those statements using techniques of cohomology to
give description of Artin Reciprocity Map.

2 Statement of Local Class Field Theory

Before we present the full statement, we will do a quick overview of essential
facts from Galois Theory and Local Fields.

Let K be a field

Definition 2.1 A field extension K ↪→ L is called Galois Extension if it is
normal, separable, and algebraic.

Definition 2.2 A Galois group Gal(L/K) of a Galois extension is defined as
group of automorphisms of L that fix K. This is given by the topology

US : {g ∈ Gal(L/K) : gx = x, x ∈ S} : S ∈ L

One can also show that Gal(L/K) is a profinite group as every element x ∈ L
has finitely many Galois conjugates thus making Ux a group with finite index.

Definition 2.3 An absolute Galois group of K is defined as Gk = Gal(Ksep/K)
where Ksep is the separable closure of field K

Theorem 2.4(Fundamental Theorem of Galois Theory) There is an equivalence
of categories for he continuous left Gk action to algebras over K which are
isomorphic to separable extensions of K, that sends
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∐
i

(Gk/Hi)→
∏
i

(Ksep)H

This functor sends fiber products of Gk sets to tensor product of algebras. It
means that for Gk equivariant maps S1, S2 → T of sets, there is an isomorphism

F (S1 ×T S2) ∼= F (S1)⊗F (T ) F (S2)

This will aid us to compute tensor products of fields. Thus, it can also be
translated that fundamental group SpecK is well defined and isomorphic to the
absolute Galois group, as right hand side of tensor product is category of finite
etale schemes over SpecK.

Definition 2.5 A local field is a field K equipped with an absolute value func-
tion |−|K : K → R satisfying the following properties:

1) |x| = 0 if and only if x = 0

2) there exists an element x ∈ K such that x 6= 0, 1

3) |xy| = |x||y| for all x, y ∈ K

4) |x+ y| ≤ |x|+ |y| for all x, y ∈ K

5) K is complete and locally compact with the topology induced by the metric
d(x, y) = |x− y|

We define a p-adic local field as a field that is a finite extension of Qp. It satisfies
a stringer triangle inequality; for every x, y ∈ K we have

|x+ y| ≤ max(|x|, |y|)

Proposition 2.6 If the nonarchimedean and nontrivial absolute value on |−|
on K is induced by the discrete valuation v, then the valuation ring A is discrete
valuation ring.

If α ∈ K, then by above proposition, we can write α = uπr with r ∈ Z, u as a
unit and π as the prime element or uniformizer.

If we denote the closed unit ball as

OK = {x ∈ K : |x| ≤ 1}
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This is know as ring of integers in K. Its maximal ideal is given by open unit
ball

mK = {x ∈ K : |x| ≤ 1} = (π) ⊂ OK

The residue field k = OK/mK is a finite field of characteristic p

Proposition 2.7 [CF] If K is a p-adic local field with absolute value |−|K and
L/K is a finite field extension, then there exists a unique absolute value L that
extends |−|K . In particular, it is given by

|x|K = |NL/K |1/d

where d = [L : K] is the degree of field extension

As L/K is a finite extension of p-adic local field, it induces a finite extension
of residue fields l/k. We define the ramification index eL/K and inertia degree
fL/K as

eL/K = [|L×| : |K×|], fL/K = [l : k]

Proposition 2.8 [CF, proposition 5.3] For any finite extension L/K of p-adic
local fields , we have

d = [L : K] = eL/kfL/K

Theorem 2.9 [CF, Theorem 7.1] Let K be a p-adic local field. For every given
integer d ≥ 1, there exists a unique unramified extension L/K of degree f up to
isomorphism. In particular, it is given by

L = K(ζqf−1)

where q = |k| is the cardinality of the residue field.

As it is a cyclotomic extension, it is Galois and is cyclic. We choose a canonical
generator of this group, called Frobenius

FrobL/K ∈ Gal(l/k) ∼= Gal(L/K);x 7→ xq, x ∈ L

We can also take the union of all the unramified extensions and obtain the
maximal unramified extension
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Kunr =
⋃
f≥1

K(ζqf−1) ⊆ Ksep

Theorem 2.10 [CF, Theorem 6.1] Let K be a p-adic local field

1) If L/K is totally ramified extension of degree e, then for any uniformizer
πL = OL, we have OL = OK [πL]. Moreover the monic polynomial of πL over
K is a degree e Eisenstein polynomial with coefficients in Ok

2) If f(x) ∈ Ok is an Eisenstein polynomial of degree e, then the splitting field
K[x]/(f(x)) is a totally ramified extension of degree e. Moreover, all roots in
f(x) are uniformizers.

The statement of class field theory is about the abelian part of absolute Galois
group. using infinite Galois correspondence, we can see that

Gab = Gal(Ksep/K)ab ∼= Gal(Kab/K)

where the ab denotes the abelianization of the group and Kab is the maximal
abelian extension of K

Theorem 2.11 (Local class field theory) For every nonarchimedean local field
K, there exists a unique homomorphism:

φk : K× → Gal(Kab/K)

with the following properties:

1) for every prime element π of K and every finite unramified extension L of
K, φK(π) acts on L as FrobL/K

2) for every finite abelian extension L of K, NmL/K is contained in the kernel
a 7→ φK(a)|L, and φK induces an isomorphism

φL/K : K×/NmL/K(L×)→ Gal(L/K)

In particular,

(K× : NmL/K(L×)) = [L : K]

The map φK factors as follows
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K× Gal(Kab/K)

Gal(L/K)K×/Nm(L×)

φk

τ 7→ τ |L

φL/K

We call φK and φL/K as Local Artin Maps of K and L/K. The subgroups of
K× of the form Nm(L×) for some finite abelian extension L of K are called the
norm groups of L×.

3 Cohomology of Groups

In modern number theory, class field theory is proven using the techniques
from Galois cohomology. The goal of this section is to gather the tools from
cohomology, and use it to produce Artin Reciprocity Map. We will take a similar
approach as show in Cassels-Frohlich [CF], Jean-Pierre Serre [Ser] and Milne’s
notes [Mil].

Let G be a finite group, then it will be a Galois group, with finite extension.

Definition 3.1 A G-module is an abelian group A with a group homomorphism
G→ Aut(A). It is also a left Z[G]-module

The group algebra Z[G] of G is a free abelian group with elements of G as basis
and multiplication provided by the group law on G.

Let us denote G − mod as the abelian category of G-modules, and by Ab as
abelian category of abelian groups. We observe a inclusion functor Ab → G −
mod, where the group gets a trivial G-action on left and right adjoints, called
as coinvariants and invariants

A 7→ AG = A/(a− ga : a ∈ A, g ∈ G);A 7→ AG = (ga = a, a ∈ A, g ∈ G)

We can also think of this in following form

AG = Z⊗Z [G]A;AG = HomZ[G](Z, A)

As |(−|)G : G −mod → Ab is a left adjoint, it is right exact. We can take its
left derived functors

Hi(G,A) = (Li(−)G)(A) ∈ Ab
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This is called group homology. Similarly, we can define the group cohomology
of A as the invariant functor G −mod → Ab is right adjoints, thus left exact.
We consider its right derived functors and get

Hi(G,A) = (Ri(−)G)(A) ∈ Ab

By the property of derived functors, any short exact sequence 0 → A → B →
C → 0 of G-modules induces a long exact sequence

...→ H1(G,A)→ H1(G,B)→ H1(G,C)→ AG → BG → CG → 0

0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)→ ...

For a G-module M , we define the norm map NmG : M →M as

m 7→
∑
g∈G gm

Tate defined

Hr
T =


Hr(G,M) r > 0

MG/NmG(M) r = 0

Ker(NmG)/IGM r = −1

H−r−1(G,M) r < −1

(1)

Thus, the exact sequence now forms

0→ H−1T (G,M)→ H0(G,M)→ H0(GM)→ H0
T (G,M)→ 0

The groups Hr
T (G,M) are known as Tate Cohomology groups. For any short

exact sequence of G-modules

0→M
′ →M →M” → 0

After applying extended snake lemma, we get a long exact sequence

...→ Hr
T (G,M

′
)→ Hr

T (G,M)→ Hr
T (G,M”)

δ−→ Hr+1
T (G,M)→ ...

Proposition 3.2: [Mil] Let G be a cyclic group of finite order. The choice of
generator for G determines the isomorphism
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Hr
T (G,M)

∼=−→ Hr+2
T (G,M)

for all G-modules M , r ∈ Z

Proof : Let σ be the generator of G. Then the following sequence is exact

0→ Z
m7→

∑
g∈G gm−−−−−−−−−→ Z[G]

σ−1−−−→ Z[G]
σi 7→1−−−→ Z→ 0

As the groups in the sequence and the kernel IG of Z[G] → Z, the sequence
remains exact even after it is tensored with M . Thus

0→M → Z[G]⊗GM → Z[G]⊗GM →M → 0

is an exact sequence of G-modules. We know that Z[G] ⊗GM ≈ Z[G] ⊗GM0,
where M0 is the abelian group as M . So, Hr

T (G,Z ⊗G M) = 0. Thus, we can
say that, for all r

Hr
T (G,M)

∼=−→ Hr+2
T (G,M)

�

Theorem 3.3 (Tate’s Theorem) Let G be a finite group and let C be a G-
module. Suppose that for all subgroups H of G (including H = G),

a) H1(H,C) = 0

b) H2(H,C) is a cyclic group of order equal to (H : 1)

Then for all r there is an isomorphism

Hr
T (G,Z)→ Hr+2

T (G,C)

depending only on choice of generator of H2(G,C)

The book [Weiss] gives a complete and detailed account of such theorems of
Tate cohomology groups

Remark 3.4[Mil] If M is a G-module, and TorZ1 (M,C) = 0, which means either
M or C is a torsion-free Z-module, then we can tensor the sequence with M
and obtain an isomorphism

Hr
T (G,M)→ Hr+2

T (G,M ⊗ C)
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Example 3.5[Mil] Let K be a local field. We shall prove that for any finite
Galois extension L of K with Galois group G, H2(G,L×) is cyclic of order [L :
K] with a generator uL/K . From Hilbert’s Theorem, we know that H1(G,L×) =
0. Tate’s theorem shows that the cup-product with uL/K is an isomorphism

Gab = H−2T (G,Z)→ H0
T (G,L×) = K×/NmL×

If we take the inverse isomorpshim, we get the local Artin map. With similar
arguments, we can also obtain global Artin map.

Now that we have the necessary tools from cohomological algebra, we will in-
tegrate them with local class field theory results and proceed towards proving
the local Artin map.

4 Local Class Field Theory via Cohomology

In this section, we will develop the cohomological approach to local class field
theory and proceed to prove the existence of local Artin map. Throughout this
section, ”local field” means ”nonarchimedean local field”. For a Galois extension
of field L/K(could be infinite) set

H2(L/K) = H2(Gal(L/K), L×)

Let K be a local field

Proposition 4.1 [Mil] Let L/K be a finite unramified extension with Galois
group G and let UL be group of units in L. Then

Hr
T (G,UL) = 0 for all r

Proposition 4.2 [Mil] Let L/K be a finite unramified extension. Then the
norm map NmL/K : UL → UK is surjective.

Corollary 4.3 [Mil] Let L/K be an infinite unramified extension with Galois
group G. Then Hr(G,UL) = 0 for r > 0 (continuous cochains).

Let L be an unramified extension of K and let G = Gal(L/K). As H2(G,UL) =
0 = H3(G,UL), the cohomology sequence of short exact sequence

0→ UL → L×
ordL−−−→ Z→ 0
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gives an isomorphism

H2(G,L×)
H2(ordL)−−−−−−→∼=

H2(G,Z)

The groups Hr(G,Q) are torsion for r > 0 and Q is divisible, the group is
uniquely divisible and hence is 0. Thus, we can produce a short exact sequence

0→ Q→ Z→ Q/Z→ 0

which would yield an isomorphism

H1(G,Q/Z)
δ−→ H2(G,Z)

We know that

H1(G,Q/Z) ∼= Homcts(G,Z)

The Frobenius element σ = FrobL/K will act as a generator. Its composite

H2(L/K)
ordL−−−→∼= H2(G,Z)

δ←−∼= H1(G,Q/Z) ∼= Homcts(G,Q/Z)
f 7→f(σ)−−−−−→ Q/Z

is called an invariant map

invL/K : H2(L/K)→ Q/Z

Theorem 4.4 [Mil] There exists a unique isomorphism

invK : H2(Kun/K)→ Q/Z

with a propoerty that for every L ⊂ Kun of finite degree n over K. The inv
induces an isomorphism

invL/K : H2(L/K) = 1
[L:K]Z/Z

Let L be a finite unramified extension of K and Galois group G and let n =
[L : K]. Let us denote uL/K as the local fundamental class. It is the element of
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H2(L/K) mapped into the generator 1/[L : K] of 1
[L:K]Z/Z from the invariant

map. The pair (G,L×) satisfies the hypotheses of Tate’s theorem and a cup-
product with the fundamental class denotes an isomorphism

Hr
T (G,Z)→ Hr+2

T (G,L×)

for all r ∈ Z. For r = −2, it becomes

H−2(G,Z) H0(G,L×)

K×/NmL×G

∼=

We now compute this map explicitly.

A prime element π of K is also prime in L and defines a decomposition

L× = UL · πZ ∼= UL × Z

of G-modules. Thus

Hr(G,L×) ∼= Hr(G,UL)⊗Hr(G, πZ)

We choose the Frobenius generator σ of G and let

f ∈ H1(G,Q/Z) ∼= Hom(G,Q/Z)

be the element such that fσ
i

= i
nZ for all i. It generates H1(G,Q/Z)

From the short exact sequence

o→ Z→ Q→ Q/Z→ 0

and we know that Hr(G,Q) = 0 for all r, we obtain an isomorphism

δ : H1(G,Q/Z)→ H2(G,Z)
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To construct δf , we choose a lifting of f to 1-cochain f̃ : G→ Q. We take f̃ to
be the map σi → i

n , where 0 ≤ i ≤ n− 1

Then,

df̃(σi, σj) = σif̃(σj)− f̃(σi+j) + f̃(σi) =

{
0 i+ j ≤ n− 1

1 i+ J > n− 1

We can find the fundamental class uL/K with the help of πz which is a subgroup

of L[×]. It is represented by the cocycle

ϕ(σi, σj) =

{
0 i+ j ≤ n− 1

π i+ J > n− 1

From the short sequence

0→ I → Z[G]→ Z→ 0
0→ L× → L×(ϕ)→ I → 0

We obtain the following boundary maps

H−2(G,Z)→ H−1(G, I)
H−1(G, I)→ H0(G,L×)

which are isomorphisms due to the trivial cohomology of Z[G] and L×(ϕ)
Finally, H−2(G,Z) = H1(G,Z) ∼= G.

Now with the above results, we have moved very close to proving the local class
field theory’s main statement. From the Tate’s theorem which is satisfied by
(G,L×), we have proved the following result.

Theorem 4.5 For every finite Galois extension of local fields L/K and r ∈ Z,
the homomorphism

Hr
T (Gal(L/K),Z)→ Hr+2

T (Gal(L/K), L×)

defined by x 7→ x ∪ uL/K is an isomorphism. When r = −2, this becaomes an
isomorphism
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G[ab] ∼= K×/NmL/K(L×)

Lemma 4.6 Let K ⊂ E ⊂ L be local fields. Then the following diagrams
commute

E× Gal(L/E)ab

Gal(L/K)abK×

φL/E

φL/K

NmE/K

E× Gal(L/E)ab

Gal(L/K)abK×

φL/E

V er

φL/K

The unmarked arrows are induced by the inclusions K ⊂ E

Let K ⊂ E ⊂ L be local fields with both L and E Galois over K. The following
diagram commutes

K× Gal(L/K)ab

Gal(E/K)ab

φL/K

φE/K

The unmarked arrow is induced by surjection σ → σ|E

In particular if K ⊂ E ⊂ L is a tower of finite abelian extensions of K then
φL/K(a)|E = φE/K(a) for all a ∈ K×, thus we can define K× → Gal(Kab/K) to
be homomorphism such that, for every finite abelian extension L/K, φK(a)L =
ϕL/K(a)
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Theorem 4.6 (Local class field theory) For every nonarchimedean local field
K, there exists a unique homomorphism:

φk : K× → Gal(Kab/K)

with the following properties:

1) for every prime element π of K and every finite unramified extension L of
K, φK(π) acts on L as FrobL/K

2) for every finite abelian extension L of K, NmL/K is contained in the kernel
a 7→ φK(a)|L, and φK induces an isomorphism

φL/K : K×/NmL/K(L×)→ Gal(L/K)

Proof : Almost everything is obvious now and follows from the previous results
except 1). It follows that L is an unramified extension of K. Recall the result
of local fundamental class of Tate’s Theorem. Under the following diagram

H−2(G,Z) H0(G,L×)

K×/NmL×G

∼=

The Frobenius element σ ∈ G maps to the class to the class of π in K×/NmL×

�
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